Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Upwarp of anomalous asthenosphere beneath the Rio Grande rift

Abstract

Continental rifts are possible analogues of mid-ocean ridges, although major plate tectonic features are less clearly observed1. Current thermal models of mid-ocean ridges2–4 consist of solid lithospheric plates overlying the hotter, less viscous asthenosphere, with plate thickness increasing away from the ridge axis. The lithospheric lower boundary lies at or near the melting point isotherm, so that at greater depths higher temperatures account for lower viscosity, lower seismic velocities and possibly partial melting. Upwarp of this boundary at the ridge axis concentrates heat there, thus lowering densities by expansion and raising the sea floor to the level of thermal isostatic equilibrium. At slow spreading ridges, a major central graben forms owing to the mechanics of magma injection into the crust5. Topography, heat flow, gravity and seismic studies support these models. On the continents, a low-velocity channel has been observed, although it is poorly developed beneath ancient cratons6–9. Plate tectonic models have been applied to continental basins and margins10–12, but further similarities to the oceanic models remain elusive. Topographic uplift is often ascribed to Airy type isostatic compensation caused by crustal thickening, rather than thermal compensation in the asthenosphere. Here we discuss the Rio Grande rift, in southwestern United States. Teleseismic P-wave residuals show that regional uplift is explained by asthenosphere uplift rather than crustal thickening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morgan, P. & Baker, B. H. Tectonophysics 94, 1–4 (1983).

    Article  ADS  Google Scholar 

  2. Parker, R. L. & Oldenburg, D. W. Nature 242, 137–139 (1973).

    Article  ADS  Google Scholar 

  3. Oldenburg, D. W. Geophys. J. R. astr. Soc. 43, 425–451 (1975).

    Article  ADS  Google Scholar 

  4. Schubert, G., Froidevaux, C. & Yuen, D. A. J. geophys. Res. 81, 3525–3540 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Davis, P. M. Nature 308, 53–55 (1984).

    Article  ADS  Google Scholar 

  6. Knopoff, L. Tectonophysics 13, 497–519 (1972).

    Article  ADS  Google Scholar 

  7. Biswas, N. N. & Knopoff, L. Geophys. J.R. astr. Soc. 36, 515–540 (1974).

    Article  ADS  Google Scholar 

  8. Priestley, K. & Brune, J. J. geophys. Res. 83, 2265–2272 (1978).

    Article  ADS  Google Scholar 

  9. Priestley, K., Orcutt, J. A. & Brune, J. N. J. geophys. Res. 85, 7166–7174 (1980).

    Article  ADS  Google Scholar 

  10. McKenzie, D. Earth planet. Sci. Lett. 40, 25–32 (1978).

    Article  ADS  Google Scholar 

  11. Sleep, N. H. Geophys. J.R. astr. Soc. 24, 325–350 (1971).

    Article  ADS  Google Scholar 

  12. Steckler, M. S. & Watts, A. B. in Dynamics of Passive Margins, Geodynamics Ser. Vol. 6, 184–196 (Am. Geophys. Un., Washington, D. C., 1982).

    Book  Google Scholar 

  13. Ramberg, I. B., Cook, F. A. & Smithson, S. B. Bull. geol. Soc. Am. 89, 107–123 (1978).

    Article  Google Scholar 

  14. Cordell, L. Bull. geol. Soc. Am. 89, 1073–1090 (1978).

    Article  Google Scholar 

  15. Ander, M. E. thesis, Univ. New Mexico (1980).

  16. Iyer, H. M. Nature 253, 425–427 (1975).

    Article  ADS  Google Scholar 

  17. Aki, K. Rev. Geophys. Space Phys. 20, 161–170 (1982).

    Article  ADS  Google Scholar 

  18. Iyer, H. M. Phil. Trans. R. Soc. A310, 473–510 (1984).

    Article  ADS  Google Scholar 

  19. Evans, J. R. J. geophys. Res. 87, 2654–2670 (1982).

    Article  ADS  Google Scholar 

  20. Herrin, E. Bull. seism. Soc. Am. 58, 1196–1219 (1968).

    Google Scholar 

  21. Davis, P. M., Parker, E. C., Evans, J. R., Iyer, H. M. & Olsen, K. H. in New Mexico Geological Society Guidebook (New Mexico Geol. Soc., Socorro, New Mexico, 1984).

    Google Scholar 

  22. Aki, K., Christofferson, A. & Husebye, E. S. Bull. seism. Soc. Am. 66, 501–524 (1976).

    Google Scholar 

  23. Ellsworth, W. A. thesis, Massachusetts Inst. Technol. (1977).

  24. Ludwig, W. J., Nafe, J. E. & Drake, C. L. The Sea Vol. 4, 53–84 (Wiley, New York, 1970).

    Google Scholar 

  25. Butler, R. Rev. Geophys. Space Phys. 22, 1–36 (1984).

    Article  ADS  Google Scholar 

  26. Rieter, M., Mansure, A. J. & Shearer, C. in Rio Grande Rift: Tectonics and Magmatism (ed. Rieker, R. E.) 253–268 (Am. Geophys. Un., Washington, D. C., 1979).

    Google Scholar 

  27. Sengor, A. M. C. & Burke, K. Geophys. Res. Lett. 5, 419–421 (1978).

    Article  ADS  Google Scholar 

  28. Dziewonski, A. M., Hales, A. L. & Lapwood, E. R. Phys. Earth planet. Inter. 10, 12–48 (1975).

    Article  ADS  Google Scholar 

  29. Burdick, L. J. & Helmberger, D. V. J. geophys. Res. 83, 1699–1712 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, E., Davis, P., Evans, J. et al. Upwarp of anomalous asthenosphere beneath the Rio Grande rift. Nature 312, 354–356 (1984). https://doi.org/10.1038/312354a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312354a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing