Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New model of Saturn's ionosphere with an influx of water from the rings

Abstract

Current theoretical models of Saturn's ionosphere are similar to those of Jupiter's because of the gross similarity of their upper atmospheres. In the case of Jupiter, the theoretical models can be fitted reasonably well to ionospheric electron density profiles1,2 obtained from the Pioneer and Voyager radio occultation experiments3–5. In contrast, the theoretical models of Saturn's ionosphere are inconsistent with both the ionospheric electron density profiles6,7 obtained from the Pioneer and Voyager occultation observations8–10 and the large diurnal variation of maximum ionospheric electron density deduced from studies of Saturn lightning discharges11,12. We propose a radically different model of Saturn's ionosphere in which water plays a major role as a minor constituent present by downward diffusion from an external source. Our model Saturn ionosphere is a classical ‘F2’ type layer resulting from the photodissociative production of H+ from H2 and rapid chemical loss by a series of charge exchange reactions with water. A planet-wide influx of 4 × 107 molecules cm−2 s−1 of water from the rings is consistent with the observed ionospheric electron densities. An enhanced influx of water occurs at latitudes (−38°, +44°) connected magnetically to the inner edge of Saturn's B ring12 where an electromagnetic erosion process13 takes place. Present-day influx at these latitudes may be as large as 2 × 109 molecules cm−2 s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Atreya, S. K. & Donahue, T. M. in Jupiter (ed. Gehrels, T.) 304–318 (University of Arizona Press, Tucson, 1976).

    Google Scholar 

  2. Strobel, D. F. & Atreya, S. K. in Physics of the Jovian Magnetosphere (ed. Dessler, A. J.) 51–66 (Cambridge University Press, Cambridge, Massachusetts, 1983.

    Book  Google Scholar 

  3. Fjeldbo, G., Kliore, A., Seidel, B., Sweetnam, D. & Cain, D. Astron. Astrophys. 39, 91–96 (1975).

    ADS  CAS  Google Scholar 

  4. Eshleman, V. R. et al. Science 204, 976–978 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Eshleman, V. R. et al. Science 206, 959–962 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Atreya, S. K. & Waite, J. H. Nature 292, 682–683 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Atreya, S. K., Waite, J. H., Donahue, T. M., Nagy, A. F. & McConnell, J. C. in Saturn (ed. Gehrels, T.) 239–279 (University of Arizona Press, Tucson, 1984).

    Google Scholar 

  8. Kliore, A. J. et al. J. geophys. Res. 85, 5857–5870 (1980).

    Article  ADS  Google Scholar 

  9. Tyler, G. L. et al. Science 212, 201–206 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Tyler, G. L. et al. Science 215, 553–558 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Kaiser, M. L., Connerney, J. E. P. & Desch, M. D. Nature 303, 50–53 (1983).

    Article  ADS  Google Scholar 

  12. Kaiser, M. L., Desch, M. D. & Connerney, J. E. P. J. geophys. Res. 89, 2371–2376 (1984).

    Article  ADS  Google Scholar 

  13. Northrop, T. G. & Hill, J. R. J. geophys. Res. 88, 6102–6108 (1983).

    Article  ADS  Google Scholar 

  14. Waite, J. H., Atreya, S. K. & Nagy, A. F. Geophys. Res. Lett. 6, 723–726 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Atreya, S. K. & Donahue, T. M. Icarus 24, 358–362 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Shimizu, M. Proc. 13th Lunar planet. Symp. 709 (1980).

  17. Chen, R. S. Moon Planets 28, 37–41 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Giguere, P. T. & Huebner, W. F. Astrophys. J. 223, 638–654 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Huebner, W. F. & Carpenter, C. W. Los Alamos Scientific Laboratory Report LA-8085-MS (1979).

    Google Scholar 

  20. Bauer, S. J. Physics of Planetary Ionospheres (Springer, New York, 1973).

    Book  Google Scholar 

  21. Rishbeth, H. Rev. Geophys. 6, 33–71, 1968.

    Article  ADS  Google Scholar 

  22. Morfill, G. E., Fechtig, H., Grun, E. & Goertz, C. K. Icarus 55, 439–447 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Carlson, R. W. Nature 283, 461 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Winkelstein, P. et al. Icarus 54, 309–318 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Samuelson, R. E. et al. J. geophys. Res. 88, 8709–8715 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connerney, J., Waite, J. New model of Saturn's ionosphere with an influx of water from the rings. Nature 312, 136–138 (1984). https://doi.org/10.1038/312136a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312136a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing