Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas

Abstract

Rhodopsin is a visual pigment ubiquitous in multicellular animals. If visual pigments have a common ancient origin, as is believed, then some unicellular organisms might also use a rhodopsin photoreceptor1,2. We show here that the unicellular alga Chlamydomonas does indeed use a rhodopsin photoreceptor. We incorporated analogues of its retinal chromophore into a blind mutant; normal photobehaviour was restored and the colour of maximum sensitivity was shifted in a manner consistent with the nature of the retinal analogue added. The data suggest that 11-cis-retinal is the natural chromophore and that the protein environment of this retinal is similar to that found in bovine rhodopsin, suggesting homology with the rhodopsins of higher organisms. This is the first demonstration of a rhodopsin photoreceptor in an alga or eukaryotic protist and also the first report of behavioural spectral shifts caused by exogenous synthetic retinals in a eukaryote. A survey of the morphology and action spectra of other protists suggests that rhodopsins may be common photoreceptors of chlorophycean, prasinophycean and dinophycean algae. Thus, Chlamydomonas represents a useful new model for studying photoreceptor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Foster, K. W. & Smyth, R. D. Fedn Proc. 39, 2139 (1980).

    Google Scholar 

  2. Foster, K. W. & Smyth, R. D. Microbiol. Rev. 44, 572–630 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ehrenberg, C. G. Die Infusionthierchen als Vollkommene Organismen, Leipzig (1838).

    Google Scholar 

  4. Song, P.-S. Photochem. Photobiol. Rev. 7, 77–140 (1983).

    CAS  Google Scholar 

  5. Greuet, C. Année biol. 21, 97–141 (1982).

    Google Scholar 

  6. Balogh-Nair, V. & Nakanishi, K. in New Comprehensive Biochemistry Vol. 3 (ed. Tamm, Ch.) (Eisevier, Amsterdam, 1982).

    Google Scholar 

  7. Balogh-Nair, V. & Nakanishi, K. Meth. Enzym. 88, 496–506 (1982).

    Article  CAS  Google Scholar 

  8. Kropf, A., Whittenberger, B. P., Goff, S. P. & Waggoner, A. S. Expl Eye Res. 17, 591–606 (1973).

    Article  CAS  Google Scholar 

  9. Motto, M. G., Sheves, M., Tsujimoto, K., Balogh-Nair, V. & Nakanishi, K. J. Am. chem. Soc. 102, 7947–7949 (1980).

    Article  CAS  Google Scholar 

  10. Schimz, A., Sperling, W., Ermann, P., Bestmann, H. J. & Hildebrand, E. Photochem. Photobiol. 38, 417–423 (1983).

    Article  CAS  Google Scholar 

  11. Schimz, A., Sperling, W., Hildebrand, E. & Kohler-Hahn, D. Photochem. Photobiol. 36, 193–196 (1982).

    Article  CAS  Google Scholar 

  12. Otto, M. K., Jayaram, M., Hamilton, R. M. & Delbruck, M. Proc. natn. Acad. Sci. U.S.A. 78, 266–269 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Wang, W.-Y. Genetics 91, s134 (1979).

    Google Scholar 

  14. Knowles, A. & Dartnell, H. J. in The Eye Vol. 2B (ed. Davson, H.) 76 (Academic, New York, 1977).

    Google Scholar 

  15. Nakanishi, K., Balogh-Nair, V., Arnaboldi, M., Tsujimoto, K. & Honig, B. J. Am. chem. Soc. 102, 7945–7947 (1980).

    Article  CAS  Google Scholar 

  16. Oesterhelt, D. & Stoekenius, W. Nature new Biol. 233, 149–152 (1971).

    Article  CAS  Google Scholar 

  17. Huang, B., Ramanis, Z., Dutcher, S. K. & Luck, D. J. C. Cell 29, 745–753 (1982).

    Article  CAS  Google Scholar 

  18. Straley, S. C. & Bruce, V. G. Pl. Physiol. 63, 1175–1181 (1979).

    Article  CAS  Google Scholar 

  19. Goodenough, J. E., Bruce, V. G. & Carter, A. Biol. Bull. mar. biol. Lab., Woods Hole 161, 371–381 (1981).

    Article  CAS  Google Scholar 

  20. Hoops, H. J. & Witman, G. B. J. Cell Biol. 97, 902–908 (1983).

    Article  CAS  Google Scholar 

  21. Brokaw, C. J. & Luck, D. J. C. Cell Motility 4, 131–150 (1983).

    Article  Google Scholar 

  22. Nathans, J. & Hogness, D. S. Cell 34, 807–814 (1983).

    Article  CAS  Google Scholar 

  23. Nichelson-Guthrie, C. S. & Hudock, G. A. J. gen. Microbiol. 129, 159–165 (1983).

    Google Scholar 

  24. Hutner, S. H., Provosoli, L., Schatz, A. & Haskins, C. P. Proc. Am. phil Soc. 94, 152–170 (1950).

    CAS  Google Scholar 

  25. Eslava, A. P., Alvarez, M. I. & Cerdá-Olmedo, E. Eur. J. Biochem. 48, 617–623 (1974).

    Article  CAS  Google Scholar 

  26. Hubbard, R., Brown, P. K. & Bownds, D. Meth. Enzym. 33 C, 615–653 (1971).

    Article  Google Scholar 

  27. Arnaboldi, M., Motto, M. G., Tsujimoto, K., Balogh-Nair, V. & Nakanishi, K. J. Am. chem. Soc. 101, 7082–7086 (1979).

    Article  CAS  Google Scholar 

  28. Blatz, P. E., Dewhurst, P. B., Balasubramaniyan, V., Balasubramaniyan, P. & Lin, M. Photochem. Photobiol. 11, 1–15 (1970).

    Article  CAS  Google Scholar 

  29. Erickson, J. O. & Blatz, P. E. Vision Res. 8, 1367–1375 (1968).

    Article  CAS  Google Scholar 

  30. Tokunaga, F. & Ebrey, T. G. Biochemistry 17, 1915–1922 (1978).

    Article  CAS  Google Scholar 

  31. Sperling, W. & Schimz, A. Biophys. Struct. Mech. 6, 165–169 (1980).

    Article  CAS  Google Scholar 

  32. Azuma, M., Azuma, K. & Keto, Y. Biochim. biophys. Acta 295, 520–527 (1973).

    Article  CAS  Google Scholar 

  33. Honig, B. et al. J. Am. chem. Soc. 101, 7084–7086 (1979).

    Article  CAS  Google Scholar 

  34. Schletz, K. Z. Pflanzenphysiol 77, 189–211 (1976).

    Article  CAS  Google Scholar 

  35. Litvin, F. F., Sineshchekov, O. A. & Sineshchekov, V. A. Nature 271, 476–478 (1978).

    Article  ADS  CAS  Google Scholar 

  36. Halldal, P. Physiologia Pl. 14, 133–139 (1961).

    Article  CAS  Google Scholar 

  37. Forward, R. B. Jr J. Protozool. 21, 312–315 (1974).

    Article  Google Scholar 

  38. Lack, D. J. L. J. Cell Biol. 98, 789–794 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, K., Saranak, J., Patel, N. et al. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311, 756–759 (1984). https://doi.org/10.1038/311756a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311756a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing