Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pattern of presynaptic nerve activity can determine the type of neurotransmitter regulating a postsynaptic event

Abstract

The mammalian superior cervical ganglion has been the classical preparation for studying cholinergic transmission between neurones1–3. Recently, however, evidence has been presented showing that, in addition to the postsynaptic changes mediated via nicotinic and muscarinic receptors, there is a non-cholinergic component to transmission in this ganglion4,5, as in frog paravertebral ganglia6,7. In the rabbit superior cervical ganglion, Ashe and Libet recorded a late, slow excitatory postsynaptic potential in response to preganglionic nerve stimulation in the presence of nicotinic and muscarinic antagonists4. We have found, in the rat superior cervical ganglion, that a postsynaptic biochemical consequence of preganglionic nerve stimulation, namely the acute activation of tyrosine 3-monooxygenase (tyrosine hydroxylase, TH; EC 1.14.16.2), is mediated in part by acetylcholine and in part by a non-cholinergic neurotransmitter5. The regulation of this enzyme activity is of particular interest because it catalyses the rate-limiting step in the biosynthesis of the postganglionic neurotransmitter, noradrenaline. In the present paper, we report that the relative importance of cholinergic and non-cholinergic transmission in the regulation of TH activity varies with the pattern of electrical stimulation of the preganglionic nerve trunk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Feldberg, W. & Gaddum, J. H. J. Physiol., Lond. 81, 305–319 (1934).

    Article  CAS  Google Scholar 

  2. Eccles, R. M. J. Physiol., Lond. 117, 181–195 (1952).

    Article  CAS  Google Scholar 

  3. Skok, V. I. Physiology of Autonomic Ganglia (I Shoin, Tokyo, 1973).

  4. Ashe, J. H. & Libet, B. J. Physiol., Lond. 320, 333–346 (1981).

    Article  CAS  Google Scholar 

  5. Ip, N. Y., Perlman, R. L. & Zigmond, R. E. Proc. natn. Acad. Sci. U.S.A. 80, 2081–2085 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Nishi, S. & Koketsu, K. J. Neurophysiol. 31, 109–121 (1968).

    Article  CAS  Google Scholar 

  7. Jan, L. Y. & Jan, Y. N. J. Physiol., Lond. 327, 219–246 (1982).

    Article  CAS  Google Scholar 

  8. Ip, N. Y., Perlman, R. L. & Zigmond, R. E. J. Pharmac. exp. Ther. 223, 280–283 (1982).

    CAS  Google Scholar 

  9. Libet, B. Fedn Proc. 29, 1945–1956 (1970).

    CAS  Google Scholar 

  10. McIsaac, R. J. J. Pharmac. exp. Ther. 200, 107–116 (1977).

    CAS  Google Scholar 

  11. Volle, R. L. Pharmacology of Ganglionic Transmission (ed. Kharkevich, D. A.) 385–410 (Springer, Berlin, 1980).

    Book  Google Scholar 

  12. Brown, D. A. Pharmacology of Ganglionic Transmission (ed. Kharkevich, D. A.) 185–235 (Springer, Berlin, 1980).

    Book  Google Scholar 

  13. Ip, N. Y., Ho, C. K. & Zigmond, R. E. Proc. natn. Acad. Sci. U.S.A. 79, 7566–7569 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Ip, N. Y., Baldwin, C. & Zigmond, R. E. Peptides 5, 309–312 (1984).

    Article  CAS  Google Scholar 

  15. Burnstock, G. et al. Neurosci. Res. Prog. Bull. 17, 383–486 (1979).

    Google Scholar 

  16. Tsunoo, A., Konishi, S. & Otsuka, M. Neuroscience 7, 2025–2037 (1982).

    Article  CAS  Google Scholar 

  17. Anderson, P-O. et al. J. Physiol., Lond. 322, 469–483 (1982).

    Article  Google Scholar 

  18. Gainer, H. in Comparative Endocrinology (eds Gaillard, P. J. & Boer, H. H.) 293–304 (Elsevier/North-Holland Biomedical, Amsterdam, 1978).

    Google Scholar 

  19. Iggo, A. & Vogt, M. J. Physiol., Lond. 150, 114–133 (1960).

    Article  CAS  Google Scholar 

  20. Anderson, P-O., Bloom, S. R. & Järhult, J. J. Physiol., Lond. 334, 293–307 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ip, N., Zigmond, R. Pattern of presynaptic nerve activity can determine the type of neurotransmitter regulating a postsynaptic event. Nature 311, 472–474 (1984). https://doi.org/10.1038/311472a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311472a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing