Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

On the formation of calderas during ignimbrite eruptions

Abstract

Many large calderas result from the eruption of substantial volumes (tens or hundreds of km3) of silicic pyroclastics. Such events often begin with an airfall phase and progress to the generation of voluminous ignimbrites1–3. We propose here that many such eruptions involve two well-defined stages, based on a simple analysis of magma chamber pressure variations during an eruption. The first stage begins when an overpressured magma chamber fractures the country rock and forms a conduit to the surface. The chamber pressure decreases rapidly to values less than lithostatic pressure. We show that only small to moderate volumes of magma, representing a small fraction of the total chamber, can be erupted during this stage. In the second stage, caldera collapse results from a further decrease in magma pressure, which causes the chamber roof to fracture catastrophically and deform. Subsidence of the roof attempts to re-establish lithostatic pressures within the chamber and can drive substantial volumes of magma to the surface. Geological relationships in pyroclastic deposits associated with large caldera eruptions provide independent evidence for this model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, H. Univ. Calif. Dept. Geol. Sci. Bull. 25, 239–346 (1941).

    Google Scholar 

  2. Smith, R. L. Geol. Soc. Am. Spec. Pap. 180, 5–27 (1979).

    ADS  CAS  Google Scholar 

  3. Wilson, L., Sparks, R. S. J. & Walker, G. P. L. Geophys. J. R. astr. Soc. 63, 117–148 (1980).

    Article  ADS  Google Scholar 

  4. Smith, R. L. & Bailey, R. A. Geol. Soc. Am. Mem. 116, 613–662 (1968).

    Google Scholar 

  5. Roberts, J. L. Geol. J. Spec. Iss. 2, 287–338 (1970).

    Google Scholar 

  6. Christiansen, R. L., Lipman, P. W., Orkild, P. P. & Byers, F. M. Jr. US Geol. Surv. Prof. Pap. 545B, B43–B48, 1965.

    Google Scholar 

  7. Christiansen, R. L. in Explosive Volcanism, Inception, Evolution and Hazards, 84–95 (National Academy Press, Washington DC, 1984).

    Google Scholar 

  8. Simkin, T. & Fiske, R. S. Krakatau 1883. The Volcanic Eruption and its Effects (Smithsonian Institute Press, Washington DC, 1983).

    Google Scholar 

  9. Sparks, R. S. J. et al. J. Volcan. Geotherm. Res. (in the press).

  10. Druitt, T. H. thesis, Univ. Cambridge (1983).

  11. Bond, A. & Sparks, R. S. J. J. geol. Soc. Lond. 132, 1–16 (1976).

    Article  Google Scholar 

  12. Self, S. & Wright, J. V. EOS 62, 1085 (1981).

    Google Scholar 

  13. Walker, G. P. L. J. Volcan. Geotherm. Res. 8, 69–94 (1980).

    Article  ADS  Google Scholar 

  14. Lipman, P. W. J. geophys. Res. (in the press).

  15. Francis, P. W. et al. Nature 301, 51–53 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Walker, G. P. L. J. geophys. Res. (in the press).

  17. Shaw, H. R. in Geochemical Transport and Kinetics (eds Hoffman, A. W., Giletti, B. J., Yoder, H. S. & Yund, R. A.) 139–170 (Carnegie Institute, Washington Publ. 634, 1974).

    Google Scholar 

  18. Blake, S. Nature 289, 783–785 (1981).

    Article  ADS  Google Scholar 

  19. Murase, T. & McBirney, A. R. Bull. geol. Soc. Am. 84, 3563–3592 (1973).

    Article  CAS  Google Scholar 

  20. Reynolds, D. L. Koninkl. Nederlandsch. Mijnb. Genootscap. Verh. Geol. 16, 355–398 (1956).

    CAS  Google Scholar 

  21. Bacon, C. R. J. Volcan. Geotherm. Res. 18, 57–115 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Druitt, T. H. & Sparks, R. S. J. J. Volcan. Geotherm. Res. 13, 147–171 (1982).

    Article  ADS  Google Scholar 

  23. Lipman, P. W. Bull. geol. Soc. Am. 87, 1397–1410 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druitt, T., Sparks, R. On the formation of calderas during ignimbrite eruptions. Nature 310, 679–681 (1984). https://doi.org/10.1038/310679a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310679a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing