Do general anaesthetics act by competitive binding to specific receptors?

Abstract

Most proteins are insensitive to the presence of anaesthetics at concentrations which induce general anaesthesia, while some are inhibited by certain agents but not others1. Here we show that, over a 100,000-fold range of potencies, the activity of a pure soluble protein (firefly luciferase) can be inhibited by 50% at anaesthetic concentrations which are essentially identical to those which anaesthetize animals. This identity holds for inhalational agents (such as halothane, methoxyflurane and chloroform), aliphatic and aromatic alcohols, ketones, ethers and alkanes. This finding is all the more striking in view of the fact that the inhibition is shown to be competitive in nature, with anaesthetic molecules competing with substrate (luciferin) molecules for binding to the protein. We show that the anaesthetic-binding site can accommodate only one large, but more than one small, anaesthetic molecule. The obvious mechanism suggested by our results is that general anaesthetics, despite their chemical and structural diversity, act by competing with endogenous ligands for binding to specific receptors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Franks, N. P. & Lieb, W. R. Nature 300, 487–493 (1982).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Halsey, M. J. & Smith, E. B. Nature 227, 1363–1365 (1970).

    ADS  CAS  Article  Google Scholar 

  3. 3

    White, D. C. & Dundas, C. R. Nature 226, 456–458 (1970).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Middleton, A. J. & Smith, E. B. Proc. R. Soc. B193, 159–171 (1976).

    ADS  CAS  Google Scholar 

  5. 5

    Middleton, A. J. & Smith, E. B. Proc. R. Soc. B193, 173–190 (1976).

    ADS  CAS  Google Scholar 

  6. 6

    Ueda, I. & Kamaya, H. Anesthesiology 38, 425–436 (1973).

    CAS  Article  Google Scholar 

  7. 7

    Adey, G., Wardley-Smith, B. & White, D. Life Sci. 17, 1849–1854 (1976).

    Article  Google Scholar 

  8. 8

    Branchini, B. R., Marschner, T. M. & Montemurro, A. M. Analyt. Biochem. 104, 386–396 (1980).

    CAS  Article  Google Scholar 

  9. 9

    DeLuca, M. & McElroy, W. D. Biochemistry 13, 921–925 (1974).

    CAS  Article  Google Scholar 

  10. 10

    Wishnia, A. & Pinder, T. W. Biochemistry 5, 1534–1542 (1966).

    CAS  Article  Google Scholar 

  11. 11

    Robillard, K. A. & Wishnia, A. Biochemistry 11, 3835–3840 (1972).

    CAS  Article  Google Scholar 

  12. 12

    DeLuca, M. Biochemistry 8, 160–166 (1969).

    CAS  Article  Google Scholar 

  13. 13

    Denburg, J. L., Lee, R. T. & McElroy, W. D. Archs Biochem. Biophys. 134, 381–394 (1969).

    CAS  Article  Google Scholar 

  14. 14

    Franks, N. P. & Lieb, W. R. Nature 274, 339–342 (1978).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Seeman, P. Pharmac. Rev. 24, 583–655 (1972).

    CAS  Google Scholar 

  16. 16

    LaBella, F. S. Perspect. Biol. Med. 25, 322–331 (1982).

    CAS  Article  Google Scholar 

  17. 17

    Richards, C. D. et al. Nature 276, 775–779 (1978).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Steward, A., Allott, P. R., Cowles, A. L. & Mapleson, W. W. Br. J. Anaesth. 45, 282–293 (1973).

    CAS  Article  Google Scholar 

  19. 19

    Miller, K. W. & Smith, E. B. in A Guide to Molecular Pharmacology-Toxicology Vol. 1 (ed. Featherstone, R. M.) 427–475 (Dekker, New York, 1973).

    Google Scholar 

  20. 20

    Brink, F. & Posternak, J. M. J. cell. comp. Physiol. 32, 211–233 (1948).

    CAS  Article  Google Scholar 

  21. 21

    Miller, K. W., Paton, W. D. M., Smith, R. A. & Smith, E. B. Molec. Pharmac. 9, 131–143 (1973).

    CAS  Google Scholar 

  22. 22

    Kita, Y., Bennett, L. J. & Miller, K. W. Biochim. biophys. Acta 647, 130–139 (1981).

    CAS  Article  Google Scholar 

  23. 23

    Cherkin, A. & Catchpool, J. F. Science 144, 1460–1462 (1964).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Abraham, M. H. J. Am. chem. Soc. 104, 2085–2094 (1982).

    CAS  Article  Google Scholar 

  25. 25

    Coraish-Bowden, A. Fundamentals of Enzyme Kinetics (Butterworths, London, 1979).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Franks, N., Lieb, W. Do general anaesthetics act by competitive binding to specific receptors?. Nature 310, 599–601 (1984). https://doi.org/10.1038/310599a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing