Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites

Abstract

p60src, the transforming protein of Rous sarcoma virus1 (RSV), is a protein kinase2 that has a strict specificity for tyrosine3. The phosphorylation of cellular proteins by p60src (ref. 4) results in transformation. Recently, Barker and Dayhoff5 discovered that residues 259–485 of p60src have 22% sequence identity with residues 33–258 of the catalytic subunit of cyclic AMP-dependent protein kinase, an enzyme that has a specificity for serine. Because it was necessary to introduce eight gaps to align the two proteins, the question remained as to whether this apparent homology reflected a common evolutionary origin. We demonstrate here that the ATP analogue p-fluorosulphonylbenzoyl 5′-adenosine (FSBA) inactivates the tyrosine protein kinase activity of p60src by reacting with lysine 295. When aligned for maximum sequence identity, lysine 295 of p60src and the lysine in the catalytic subunit which also reacts specifically with FSBA are superimposed precisely. This functional homology is strong evidence that the protein kinases, irrespective of amino acid substrate specificity, comprise a single divergent gene family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Purchio, A. F., Erikson, E., Brugge, J. S. & Erikson, R. L. Proc. natn. Acad. Sci. U.S.A. 75, 1567–1571 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Collett, M. S. & Erikson, R. L. Proc. natn. Acad. Sci. U.S.A. 75, 2021–2024 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Hunter, T. & Sefton, B. M. Proc. natn. Acad. Sci. U.S.A. 77, 1311–1315 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Sefton, B. M. & Hunter, T. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 18, 195–226 (1984).

    CAS  PubMed  Google Scholar 

  5. Barker, W. C. & Dayhoff, M. O. Proc. natn. Acad. Sci. U.S.A. 79, 2836–2839 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Pal, P. K., Wechter, W. J. & Colman, R. F. J. biol. Chem. 250, 8140–8147 (1975).

    CAS  PubMed  Google Scholar 

  7. Colman, R. F. A. Rev. Biochem. 52, 67–91 (1982).

    Article  Google Scholar 

  8. Sefton, B. M. & Walter, G. J. Virol. 44, 467–474 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong, T. W. & Goldberg, A. R. J. biol. Chem. 258, 1022–1025 (1983).

    CAS  PubMed  Google Scholar 

  10. Houmard, J. & Drapeau, G. Proc. natn. Acad. Sci. U.S.A. 69, 3506–3509 (1972).

    Article  ADS  CAS  Google Scholar 

  11. Zoller, M. J., Nelson, N. C. & Taylor, S. S. J. biol. Chem. 256, 10837–10842 (1981).

    CAS  PubMed  Google Scholar 

  12. Hashimoto, E., Takio, K. & Krebs, E. J. biol. Chem. 257, 727–733 (1982).

    CAS  PubMed  Google Scholar 

  13. Kitamura, N., Kitamura, A., Toyoshima, K., Hirayama, Y. & Yoshida, M. Nature 297, 205–208 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Shibuya, M. & Hanafusa, H. Cell 30, 787–795 (1982).

    Article  CAS  Google Scholar 

  15. Reddy, E. P., Smith, M. J. & Srinivasan, A. Proc. natn. Acad. Sci. U.S.A. 80, 3623–3627 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Naharro, G., Robbins, K. C. & Reddy, E. P. Science 223, 63–66 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Yamamoto, T. et al. Cell 35, 71–78 (1983).

    Article  CAS  Google Scholar 

  18. Downward, J. et al. Nature 307, 521–527 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Ushiro, H. & Cohen, S. J. biol. Chem. 255, 8363–8365 (1980).

    CAS  PubMed  Google Scholar 

  20. Schwartz, D., Tizard, R. & Gilbert, W. Cell 32, 853–869 (1983).

    Article  CAS  Google Scholar 

  21. Rossman, M., Garavito, R. & Eventoff, W. FEBS Symp. 49, 3–30 (1977).

    Google Scholar 

  22. Adams, M., et al. Proc. natn. Acad. Sci. U.S.A. 70, 1968–1972 (1973).

    Article  ADS  CAS  Google Scholar 

  23. Wierenga, R. & Hol, W. Nature 302, 842–844 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Van Beveren, C. et al. Nature 289, 258–262 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Mark, G. E. & Rapp, U. R. Science 224, 285–288 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Hampe, A., Gobet, M., Scherr, C. J. & Galibert, F. Proc. natn. Acad. Sci. U.S.A. 81, 85–89 (1983).

    Article  ADS  Google Scholar 

  27. Papkoff, J., Verma, I. & Hunter, T. Cell 29, 417–426 (1982).

    Article  CAS  Google Scholar 

  28. Rapp, U. R., Reynolds, F. H. & Stephenson, J. R. J. Virol. 45, 914–924 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Reynolds, F. H., Van de Ven, W. J. M., Blomberg, J. & Stephenson, J. R. J. Virol. 38, 1084–1089 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Levinson, A. D., Oppermann, H., Varmus, H. E. & Bishop, J. M. J. biol. Chem. 255, 11973–11980 (1980).

    CAS  PubMed  Google Scholar 

  31. Beemon, K., Hunter, T. & Sefton, B. M. J. Virol. 30, 190–200 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gibson, W. Virology 62, 319–336 (1974).

    Article  CAS  Google Scholar 

  33. Beemon, K. & Hunter, T. J. Virol. 28, 551–566 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Patschinsky, T. & Sefton, B. M. J. Virol. 39, 104–114 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Potter, R. & Taylor, S. J. biol. Chem. 254, 2413–2418 (1979).

    CAS  PubMed  Google Scholar 

  36. Laursen, R., Bonner, A. & Horn, M. in Instrumentation in Amino Acid Sequence Analysis (ed. Perham, R. N.) 73–110 (Academic, London, 1975).

    Google Scholar 

  37. Doolittle, L., Mross, G., Fothergill, L. & Doolittle, R. Analyt. Biochem. 78, 491–505 (1977).

    Article  CAS  Google Scholar 

  38. Gilmer, T., Parsons, J. & Erikson, R. Proc. natn. Acad. Sci. U.S.A. 79, 2152–2156 (1982).

    Article  ADS  CAS  Google Scholar 

  39. Erikson, R. & Gilmer, T. Nature 294, 771–773 (1981).

    Article  ADS  Google Scholar 

  40. Shoji, S. et al. Proc. natn. Acad. Sci. U.S.A. 78, 848–852 (1981).

    Article  ADS  CAS  Google Scholar 

  41. Kan, N. C. et al. Science 223, 813–816 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamps, M., Taylor, S. & Sefton, B. Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites. Nature 310, 589–592 (1984). https://doi.org/10.1038/310589a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310589a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing