Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements

Abstract

The Drosophila genetic element copia is one of the best studied eukaryotic transposable sequences. Copia shares structural features with a wide variety of mobile elements in Drosophila1,2, Lepidoptera3, yeast4,5 and vertebrates1,2, the last class being the retrovirus proviruses. Furthermore, retrovirus-like particles containing copia RNA have been isolated from Drosophila cells6 and extrachromosomal circular copias with structures closely resembling circular retrovirus proviruses have been isolated and cloned7,8. Therefore, copia-like elements and retroviruses may be members of a class of mobile genetic elements existing throughout the eukaryotic kingdom. Consequently, there has been speculation that retroviruses evolved from transposable elements7–9 and, conversely, that copia-like elements transpose as retroviruses or retrovirus-like particles6–8. To date, however, there has been no demonstration that copia RNA is reverse transcribed into copia DNA. The present report describes the isolation of linear extrachromosomal copias whose structure closely resembles the analogous retrovirus provirus linears and whose synthesis is unaffected by inhibitors of the cellular DNA polymerase responsible for chromosomal DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rubin, G. M. et al. Cold Spring Harb. Symp. quant. Biol. 45, 619–628 (1981).

    Article  CAS  Google Scholar 

  2. Varmus, H. E. in Mobile Genetic Elements (ed. Shapiro, J. A.) (Academic, New York, 1982).

    Google Scholar 

  3. Miller, D. W. & Miller, L. K. Nature 299, 562–564 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Farabaugh, P. J. & Fink, G. R. Nature 286, 352–356 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Gafner, J. & Philippsen, P. Nature 286, 414–418 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Shiba, T. & Saigo, K. Nature 302, 119–124 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Flavell, A. J. & Ish-Horowicz, D. Nature 292, 591–595 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Flavell, A. J. & Ish-Horowicz, D. Cell 34, 415–4l9 (1983).

    Article  CAS  Google Scholar 

  9. Temin, H. M. Cell 21, 599–600 (1980).

    Article  CAS  Google Scholar 

  10. Varmus, H. E. & Shank, P. R. J. Virol. 18, 567–573 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hirt, B. J. molec. Biol. 26, 365–369 (1967).

    Article  CAS  Google Scholar 

  12. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  13. Jacob, S. T. (ed.) Enzymes of Nucleic Acid Synthesis and Modification Vol. 1, 54–55 (CRC Press, Boca Raton, Florida, 1983).

  14. Hagino-Yamagishi, K., Kano, K. & Mano, Y. Biochem. biophys. Res. Commun. 102, 1372–1378 (1981).

    Article  CAS  Google Scholar 

  15. Hsu, T. W. & Taylor, J. M. J. Virol. 44, 493–498 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hubscher, U., Kuenzle, C. C. & Spadari, S. Proc. natn. Acad. Sci. U.S.A. 76, 2316–2320 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Tooze, J. (ed.) DNA Tumour Viruses. Molecular Biology of Tumour Viruses 2nd edn (Cold Spring Harbor Laboratory, New York, 1981).

  18. Yang, S. S. & Wivel, N. A. J. Virol. 13, 712–720 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuff, E. L. et al. Proc. natn. Acad. Sci. U.S.A. 80, 1992–1996 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Heine, C. W., Kelly, D. C. & Avery, R. J. J. gen. Virol. 49, 385–395 (1980).

    Article  CAS  Google Scholar 

  21. Fink, G., Farabaugh, P., Roeder, G. & Chaleff, D. Cold Spring Harb. Symp. quant. Biol. 45, 575–580 (1980).

    Article  Google Scholar 

  22. Copeland, N. G., Hutchison, K. W. & Jenkins, N. A. Cell 33, 379–387 (1983).

    Article  CAS  Google Scholar 

  23. Sinclair, J. H., Sang, J. H., Burke, J. F. & Ish-Horowicz, D. Nature 306, 198–200 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Eschalier, G. & Ohanessian, A. In Vitro 6, 162–172 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flavell, A. Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements. Nature 310, 514–516 (1984). https://doi.org/10.1038/310514a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310514a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing