Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New photoactivatable cyclic nucleotides produce intracellular jumps in cyclic AMP and cyclic GMP concentrations

Abstract

The cyclic nucleotides cyclic AMP and cyclic GMP are important intracellular messengers mediating the responses to neurotransmitters and neurohormones and regulating cellular function over a wide range of time scales1,2. Despite the widespread acceptance of this second messenger mechanism3,4 in many systems, much remains unknown about their mechanism of action, except that such events are associated with increases or decreases in intracellular cyclic nucleotides. Quantitative descriptions of cyclic nucleotide-dependent processes are hampered by the absence of a means by which intracellular cyclic nucleotide concentrations can be accurately controlled. We have now designed, synthesized and characterized new, substituted5 photolabile cyclic nucleotide analogues, the 4,5-dimethoxy-2-nitrobenzyl esters of cyclic AMP and cyclic GMP (Fig. 1), which are physiologically inert before irradiation and which liberate free cyclic AMP or cyclic GMP on absorption of a photon. The thermal properties and photolysis rates and efficiencies of light-induced release of cyclic nucleotides from these analogues are more favourable than for the simple o-nitrobenzyl derivatives used previously6. These molecules should permit intracellular ‘concentration jumps’ of cyclic AMP or cyclic GMP to be produced in cells under physiological investigation with spatial and temporal resolution unmatched by conventional techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kupferman, I. A. Rev. Neurosci. 2, 447–465 (1979).

    Article  Google Scholar 

  2. Drummond, G. I. Adv. Cyclic Nucleotide Res. 15, 373–494 (1983).

    CAS  Google Scholar 

  3. Sutherland, E. W. & Rall, T. W. Pharmac. Rev. 12, 265–299 (1960).

    CAS  Google Scholar 

  4. Sutherland, E. W. & Robison, G. A. Pharmac. Rev. 18, 145–161 (1966).

    CAS  Google Scholar 

  5. Patchornik, A., Amit, B. & Woodward, R. B. J. Am. chem. Soc. 92, 6333–6335 (1970).

    Article  CAS  Google Scholar 

  6. Nargeot, J., Nerbonne, J. M., Engels, J. & Lester, H. A. Proc. natn. Acad. Sci. U.S.A. 80, 2395–2399 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Engels, J. & Schlaeger, E. J. J. med. Chem. 20, 907–911 (1977).

    Article  CAS  Google Scholar 

  8. Lester, H. A. & Nerbonne, J. M. A. Rev. Biophys. Bioengng 11, 151–175 (1982).

    Article  CAS  Google Scholar 

  9. Nargeot, J. et al. J. gen. Physiol. 79, 657–678 (1982).

    Article  CAS  Google Scholar 

  10. Kaplan, J. H., Forbush, B. & Hoffmann, J. F. Biochemistry 17, 1929–1935 (1978).

    Article  CAS  Google Scholar 

  11. McCray, J. A., Herbette, L., Kihara, T. & Trentham, D.R. Proc. natn. Acad. Sci. U.S.A. 77, 7327–7341 (1980).

    Article  Google Scholar 

  12. Reuter, H. A. A. Rev. Physiol. 41, 413–424 (1979).

    Article  CAS  Google Scholar 

  13. Reuter, H. A. Nature 301, 569–574 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Tsien, R. W. A. Rev. Physiol. 45, 341–358 (1983).

    Article  CAS  Google Scholar 

  15. Schlossmann, V. K. Arzneimittel-Forsch. 22, 60–62 (1972).

    CAS  Google Scholar 

  16. Morad, M., Goldman, T. E. & Trentham, D. R. Nature 304, 635–638 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Nerbonne, J. M., Richard, S. & Nargeot, J. (in preparation).

  18. Trautwein, W., Taniguchi, J. & Noma, A. Pflügers Arch. ges. Physiol. 392, 307–314 (1982).

    Article  CAS  Google Scholar 

  19. Cachelin, A. B., dePeyer, J. E., Kokubun, S. & Reuter, H. Nature 304, 462–464 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Bean, B. P., Nowycky, M. C. & Tsien, R. W. Nature 307, 371–375 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Garnier, D., Lester, H. A., Nargeot, J., Nerbonne, J. M. & Richard, S. J. Physiol., Lond. 344, 38P (1983).

    Google Scholar 

  22. Engels, J. & Reidys, R. Experientia 34, 14–15 (1978).

    Article  CAS  Google Scholar 

  23. Fetscher, C. A. Org. Syn. Coll. 4, 735–737 (1963).

    Google Scholar 

  24. Davies, H. W. & Schwarz, M. J. org. Chem. 30, 1242–1244 (1965).

    Article  CAS  Google Scholar 

  25. Ried, W. & Ritz, M. Justus Liebigs Annln Chem. 691, 50–54 (1966).

    Article  CAS  Google Scholar 

  26. Richard, S., Nerbonne, J. M., Nargeot, J. & Garnier, D. Pflügers Arch. ges. Physiol (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nerbonne, J., Richard, S., Nargeot, J. et al. New photoactivatable cyclic nucleotides produce intracellular jumps in cyclic AMP and cyclic GMP concentrations. Nature 310, 74–76 (1984). https://doi.org/10.1038/310074a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310074a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing