Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nets with channels of unlimited diameter

Abstract

Three-dimensional nets and polyhedra1,2 present an unlimited mathematical challenge, and systematic enumeration of the infinite series of four-connected nets is just developing3–10 using selected algorithms. Several framework structures were solved and classified by invention of new nets (see refs 11–13). The four-connected nets of low density are of practical interest because their nodes may correspond with the tetrahedrally-coordinated atoms of aluminosilicate zeolites14, some silica polymorphs15, aluminophosphates16,17 and other molecular sieves. The nets can be classified by circuit symbols1–7 and coordination sequences18,19. Each oxygen atom of a zeolite and other tetrahedral frameworks lies near the midpoint of a branch connecting two tetrahedral nodes, and the empty volume between the close-packed oxygen atoms is important for molecular sorption. The largest ring in a natural zeolite or synthetic molecular sieve involves 12 tetrahedra11,14, but larger rings and sphere packings of lower density are known12,20–24. We report here two new infinite series of four-connected three-dimensional nets which contain channels of unlimited diameter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wells, A. F. Three-Dimensional Nets and Polyhedra (Wiley, New York, 1977).

    Google Scholar 

  2. Wells, A. F. Further Studies of Three-Dimensional Nets (American Crystallographic Association Monogr. No. 8, Polycrystal Book Service, Pittsburgh, 1979).

    Google Scholar 

  3. Smith, J. V. Am. Miner. 62, 703–709 (1977).

    CAS  Google Scholar 

  4. Smith, J. V. Am. Miner. 63, 960–969 (1978).

    CAS  Google Scholar 

  5. Smith, J. V. Am. Miner. 64, 551–562 (1979).

    CAS  Google Scholar 

  6. Smith, J. V. & Bennett, J. M. Am. Miner. 66, 777–788 (1981).

    CAS  Google Scholar 

  7. Smith, J. V. Z. Kristallogr. 65, 191–198 (1983).

    Article  Google Scholar 

  8. Smith, J. V. & Bennett, J. M. Am. Miner. 69, 104–111 (1984).

    CAS  Google Scholar 

  9. Alberti, A. Am. Miner. 64, 1188–1198 (1979).

    CAS  Google Scholar 

  10. Sato, M. Acta crystallogr. A35, 547–553 (1979).

    Article  Google Scholar 

  11. Dent, L. S. & Smith, J. V. Nature 181, 1794–1796 (1958).

    Article  ADS  CAS  Google Scholar 

  12. Barrer, R. M. & Villiger, H. Z. Kristallogr. 128, 352–370 (1963).

    Article  Google Scholar 

  13. Merlino, S. R. Soc. miner. petrol. ital. 31, 513–540 (1975).

    CAS  Google Scholar 

  14. Meier, W. M. & Olson, D. H. Atlas of Zeolite Structure Types (Juris, Zurich, 1978).

    Google Scholar 

  15. Flanigen, E. M. et al. Nature 271, 512–516 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. & Flanigen, E. M. J. Am. chem. Soc. 104, 1146–1147 (1982).

    Article  CAS  Google Scholar 

  17. Bennett, J. M., Cohen, J. P., Flanigen, E. M., Pluth, J. J. & Smith, J. V. Am. chem. Soc. Symp. Ser. 218, 79–106 (1983).

    Google Scholar 

  18. Brunner, G. O. Z. Kristallogr. 156, 295–303 (1981).

    CAS  Google Scholar 

  19. Meier, W. M. & Moeck, H. J. J. Solid St. Chem. 27, 349–355 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Heesch, F. & Laves, F. Z. Kristallogr. 85, 443–453 (1933).

    Google Scholar 

  21. Melmore, S. Nature 149, 412 (1942).

    Article  ADS  Google Scholar 

  22. Melmore, S. Nature 149, 669 (1942).

    Article  ADS  Google Scholar 

  23. Fischer, W. Z. Kristallogr. 143, 140–155 (1976).

    CAS  Google Scholar 

  24. Brunner, G. O. J. Solid St. Chem. 29, 41–45 (1979).

    Article  ADS  Google Scholar 

  25. Gramlich-Meier, R. & Meier, W. M. J. Solid St. Chem. 44, 41–49 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Flanigen, E. M. Adv. Chem. Ser. No. 121, 119–139 (1973).

  27. Price, G. D., Pluth, J. J., Smith, J. V., Bennett, J. M. & Patton, R. L. J. Am. chem. Soc. 104, 4971–4977 (1982).

    Article  Google Scholar 

  28. Evans, H. T. Jr in Perspectives in Structural Chemistry Vol. 4 (eds Dunitz, J. D. & Ibers, J.) 1–59 (Wiley, New York, 1971).

    Google Scholar 

  29. Moore, P. B. & Shen, J. Nature 306, 356–358 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J., Dytrych, W. Nets with channels of unlimited diameter. Nature 309, 607–608 (1984). https://doi.org/10.1038/309607a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309607a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing