Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine

Abstract

Hormones are important in the development of behaviour and there is now abundant evidence that they also affect the morphological development of the nervous system1–6. In principle, hormones could act by inducing new patterns of connectivity between widely separated structures in the nervous system or by influencing local connectivity. Most available work documents effects of the latter sort. We present here evidence for the former. Our results indicate that thyroxine, the hormone which causes metamorphosis in the frog Xenopus laevis, can induce precociously in a pre-metamorphic tadpole the ipsilateral retinothalamic projection, a retinofugal pathway which normally develops during metamorphosis. Our evidence suggests that the hormone's presence in one eye alone is sufficient to cause axons of some ganglion cells in that eye to grow to targets in the ipsilateral thalamus and to form terminal fields of appropriate morphology. Since the axons of the induced pathway project ipsilaterally, unlike axons in the normal pre-metamorphic tadpole, virtually all of which project contralaterally, our results are also relevant to questions concerning the control of axonal trajectory in the optic chiasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacobson, M. Developmental Neurobiology 219–249 (Plenum, New York, 1978).

    Google Scholar 

  2. Goy, R. W. & McEwen, B. S. Sexual Differentiation of the Brain 1–211 (MIT, Cambridge, 1980).

    Google Scholar 

  3. Kollros, J. J. in Metamorphosis, A Problem in Developmental Biology 2nd edn (eds Gilbert, L. I. & Frieden, E.) Ch. 13 (Plenum, New York, 1981).

    Google Scholar 

  4. Morgan, B. L. G. in Brain and Behavioral Development (eds Dickerson, J. W. T. & McGurk, H.) Ch. 4 (Surrey, London, 1982).

    Google Scholar 

  5. Konishi, M. & Gurney, M. E. Trends Neurosci. 5, 20–23 (1982).

    Article  Google Scholar 

  6. Truman, J. W. & Levine, R. B. Current Methods in Cellular Neurobiology (eds Baker, J. & McElvy, J.) (Wiley, New York, in the press).

  7. Khalil, S. H. & Szekely, G. Acta biol. sci. hung. 27, 253–260 (1976).

    CAS  Google Scholar 

  8. Kennard, C. J. Embryol. exp. Morph. 65, 199–217 (1981).

    CAS  PubMed  Google Scholar 

  9. Hoskins, S. G. & Grobstein, P. Soc. Neurosci. Abstr. 7, 289 (1981).

    Google Scholar 

  10. Hoskins, S. G. & Grobstein, P. Soc. Neurosci. Abstr. 6, 647 (1980).

    Google Scholar 

  11. Levine, R. L. J. comp. Neurol. 189, 1–29 (1980).

    Article  CAS  Google Scholar 

  12. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin), 163–188 (North-Holland, Amsterdam, 1967).

    Google Scholar 

  13. Green, W. L. in The Thyroid (eds Werner, S. C. & Ingbar, S. H.) Ch. 4 (Harper & Row, New York, 1971).

    Google Scholar 

  14. MacLean, N. & Turner, S. J Embryol. exp. Morph. 35, 261–266 (1976).

    CAS  PubMed  Google Scholar 

  15. Beach, D. H. & Jacobson, M. J. comp. Neurol. 183, 615–624 (1979).

    Article  Google Scholar 

  16. Lund, R. L., Cunningham, T. J. & Lund, J. S. Brain Behav. Evol. 8, 51–72 (1973).

    Article  CAS  Google Scholar 

  17. Hollyfield, J. G. Devl Biol. 24, 264–286 (1971).

    Article  CAS  Google Scholar 

  18. Jacobson, M. Brain Res. 103, 541–545 (1976).

    Article  CAS  Google Scholar 

  19. Beach, D. H. & Jacobson, M. J. comp. Neurol. 183, 603–614 (1979).

    Article  CAS  Google Scholar 

  20. Hoskins, S. G. & Grobstein, P. Soc. Neurosci. Abstr. 8, 513 (1982).

    Google Scholar 

  21. Beach, D. H. & Jacobson, M. J. comp. Neurol. 183, 625–632 (1979).

    Article  CAS  Google Scholar 

  22. Adams, J. C. J. Neurosci. 2, 141–145 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

address for reprint requests: Department of Biological Sciences, Columbia University, 901 Fairchild Center, New York, New York 10027, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoskins, S., Grobstein, P. Induction of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine. Nature 307, 730–733 (1984). https://doi.org/10.1038/307730a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307730a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing