Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Endogenous ouabain-like compound increases heart muscle contractility

Abstract

Cardiac glycosides such as digoxin or ouabain have long been known to influence the strength of contraction of cardiac muscle1–3. Although the mechanism of action of these compounds remains unknown4,5, all the proposed modes of action are based on initial binding to specific membrane receptors which are part of the (Na+ + K+) ATPase complex. These receptors, well characterized and defined6–8, suggest the existence of an endogenous substance capable of binding to them, in analogy with endogenous opiates, discovered long after morphine and its receptors9. As glycosides affect (Na+ + K+)ATPase activity, an endogenous substance may be a regulator of this important enzyme. Indeed, the search for endogenous regulators of the (Na+ + K+)ATPase or ouabain-like compounds (OLC) has recently intensified. These compounds, extracted and partially purified from mammalian brain10–14, heart15, blood16–19 and urine20,21, and from toad skin and plasma22,23, have been shown to inhibit 3H-ouabain binding and (Na+ + K+)ATPase activity. We report here that in addition to these effects, the OLC, highly purified from toad skin and sheep brain, increases the force of contraction of frog and guinea pig atrium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cattel, M. & Gold, H. J. Pharmac. exp. Ther. 62, 116–125 (1938).

    Google Scholar 

  2. Cotten, M. & Stopp, P. E. Am. J. Physiol. 192, 114–120 (1958).

    CAS  PubMed  Google Scholar 

  3. Langer, G. A. & Serena, D. A. J. molec. cell. Cardiol. 1, 65–70 (1970).

    Article  CAS  Google Scholar 

  4. Lee, K. S. & Klaus, W. Pharmec. Rev. 23, 194–250 (1971).

    Google Scholar 

  5. Noble, D. Cardiovasc. Res. 14, 495–514 (1980).

    Article  CAS  Google Scholar 

  6. Baker, P. F. & Willis, J. P. J. Physiol., Lond. 224, 441–462 (1972).

    Article  CAS  Google Scholar 

  7. Akera, T. & Brody, T. M. Pharmac. Rev. 29, 187–220 (1978).

    Google Scholar 

  8. Wallick, E. T., Lane, L. K. & Scwartz, A. A. Rev. Physiol. 41, 397–411 (1979).

    Article  CAS  Google Scholar 

  9. Hughes, J. et al. Nature 258, 577–579 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Haupert, G. T. Jr & Sancho, J. M. Proc. natn. Acad. Sci. U.S.A. 76, 4658–4660 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Fishman, M. Proc. natn. Acad. Sci. U.S.A. 76, 4661–4663 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Lichtstein, D. & Samuelov, S. Biochem. biophys. Res. Commun. 96, 1518–1523 (1980).

    Article  CAS  Google Scholar 

  13. Lichtstein, D. & Samuelov, S. Proc. natn. Acad. Sci. U.S.A. 79, 1453–1456 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Schwartz, A. et al. Ann. N. Y. Acad. Sci. 402, 253–271 (1982).

    Article  ADS  CAS  Google Scholar 

  15. De Pover, A., Castaneda-Hernandez, G. O. & Godfraind, T. Biochem. Pharmac. 31, 267–271 (1982).

    Article  CAS  Google Scholar 

  16. Poston, L. et al. Br. med. J. 232, 847–379 (1981).

    Article  Google Scholar 

  17. Hamlyn, J. M. et al. Nature 300, 650–652 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Gruber, K. A., Whiteker, J. M. & Buckalew, V. M. Nature 287, 743–745 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Cloix, J. F., Miller, E. D., Pernollet, M. G., Devynck, M. A. & Meyer, P. C. r. hebd. Séanc. Acad. Sci., Paris 296, 213–216 (1983).

    CAS  Google Scholar 

  20. de Wardener, H. E. & Clarkson, E. M. Clin. Sci. 63, 415–420 (1982).

    Article  CAS  Google Scholar 

  21. Clarkson, E. M., Raw, S. M. & de Wardener, H. E. Kidney Int. 16, 710–421 (1979).

    Article  CAS  Google Scholar 

  22. Flier, J. S., Maratos-Flier, E., Pallotta, J. A. & McIsaac, D. Nature 279, 341–343 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Flier, J. S., Edwards, M. W., Daly, J. J. & Myers, C. W. Science 208, 503–505 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Hart, G., Noble, D. & Shimoni, Y. J. Physiol., Lond. 334, 103–131 (1982).

    Article  Google Scholar 

  25. Deslauriers, Y., Ruiz-Ceretti, E., Schanne, O. F. & Payet, M. D. Can. J. Physiol. Pharmac. 60, 1153–1159 (1982).

    Article  CAS  Google Scholar 

  26. Tanz, R. J. Pharmac. exp. Ther. 144, 205–213 (1964).

    CAS  Google Scholar 

  27. Seifen, E. Br. J. Pharmac. 51, 481–490 (1974).

    Article  CAS  Google Scholar 

  28. Koch-Weser, J. Circulation Res. 28, 109–118 (1971).

    Article  CAS  Google Scholar 

  29. Niedergerke, R. & Page, S. Proc. R. Soc. B213, 325–344 (1981).

    ADS  CAS  Google Scholar 

  30. Hordof, A. J., Rose, E., Danilo, P. & Rosen, M. R. Am. J. Physiol. 242, H677–H682 (1982).

    CAS  PubMed  Google Scholar 

  31. Meyer, K. & Linde, H. in Venomous Animals and their Venoms Vol. 2 (eds Bucherl, W. & Buckley, E.) 521–552 (Academic, London, 1971).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimoni, Y., Gotsman, M., Deutsch, J. et al. Endogenous ouabain-like compound increases heart muscle contractility. Nature 307, 369–371 (1984). https://doi.org/10.1038/307369a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307369a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing