Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Continental freeboard, sedimentation rates and growth of continental crust

Abstract

To understand how the Earth has evolved requires a model for the timing and nature of the formation of the continental crust. Of the two contrasting models, the first and most popular is that the continental crust of the Earth has grown throughout geological time. Models of linear or exponential increasing growth with time1,2 are not currently accepted, and it is now generally held that much of the crust was in place by 2,500 Myr with a particularly active period of crustal growth and differentiation between about 3,200 and 2,500 Myr (refs 3–13). The second model argues that the present mass of the continental crust formed very early in Earth history (>4,000 Myr) and has subsequently been recycled through the mantle in a steady-state fashion such that the mass of the crust has not changed during most of Earth history14–16. Resolving these conflicting views is not simple because interpretation of the isotopic evidence is non-unique. The resolution of this debate lies in the interpretation of the record of continental freeboard17–19 and in the plausibility of large scale crustal recycling through the mantle via sediment subduction. We point out here that although the record of continental freeboard is consistent with either limited growth or no-growth models, recent sedimentation rates appear insufficient to support no-growth models. Note that evidence against a no-growth model is not necessarily evidence against minor sediment subduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hurley, P. M. Geochim. cosmochim. Acta. 32, 273–283 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Hurley, P. M. & Rand, J. R. Science 164, 1229–1242 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Moorbath, S. in The Early History of the Earth (ed. Windley, B. F. ) 351–360 (Wiley, New York, 1976).

    Google Scholar 

  4. Moorbath, S. Phil. Trans. R. Soc. A288, 401–413 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Veizer, J. in The Early History of the Earth (ed. Windley, B. F. )569–578 (Wiley, NewYork, 1976).

    Google Scholar 

  6. Veizer, J. & Compston, W. Geochim. cosmochim. Acta. 40, 905–914 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Veizer, J. & Jansen, S. L. J. Geol. 87, 341–370 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Veizer, J., Compston, W., Hoefs, J. & Neilson, J. Naturwissenschaften 69, 173–180 (1982).

    Article  ADS  CAS  Google Scholar 

  9. McCulloch, M. T. & Wasserburg, G. J. Science 200, 1003–1011 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Allegre, C. J. Tectonophysics 81, 109–132 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Taylor, S. R. & McLennan, S. M. Phil. Trans. R. Soc. A301, 381–399 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Dewey, J. F. & Windley, B. F. Phil. Trans. R. Soc. A301, 188–206 (1981).

    Article  ADS  Google Scholar 

  13. McLennan, S. M. & Taylor, S. R. J. Geol. 90, 347–361 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Armstrong, R. L. Rev. Geophys. 6, 175–199 (1968).

    Article  ADS  CAS  Google Scholar 

  15. Armstrong, R. L. & Hein, S. M. Geochim. cosmochim. Acta 37, 1–18 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Armstrong, R. L. Phil. Trans. R. Soc. A301, 443–472 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Wise, D. U. Geol. Soc. Am. Mem. 132, 87–100 (1972).

    Google Scholar 

  18. Wise, D. U. in The Geology of Continental Margins (eds Burke, C. A. & Drake, C. L.) 45–58 (Springer, Berlin, 1974).

    Book  Google Scholar 

  19. Hallam, A. Nature 269, 769–772 (1977).

    Article  ADS  Google Scholar 

  20. De Paolo, D. J. Geochim. cosmochim. Acta. 45, 1253–1254 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Rutland, R. W.R. J. Proc. R. Soc. N.S.W. 115, 33–60 (1982).

    Google Scholar 

  22. Condie, K. C. Bull. geol. Soc. Am. 84, 2981–2992 (1973).

    Article  CAS  Google Scholar 

  23. Fyfe, W. S. Geosci. Can. 3, 82–83 (1976).

    Google Scholar 

  24. Fyfe, W. S. Phil. Trans. R. Soc. A291, 433–445 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Staudigel, H. & Hart, S. R. Geochim. cosmochim. Acta 47, 337–350 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Karig, D. E. & Kay, R. W. Phil. Trans. R. Soc. A301, 233–251 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Uyeda, S. Episodes 1983 (2),19–24 (1983).

    Google Scholar 

  28. Whitford, D. J., White, W. M., Jazek, P. A. & Nicholls, I. A. Yb Carnegie Instn., Wash. 78, 304–308 (1979).

    Google Scholar 

  29. Brown, L., Klein, J., Middleton, R., Sacks, I. S. & Tera, F. Nature 299, 718–720 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Gilluly, J. Spec. Pap. geol. Soc. Am. 62, 7–18 (1955).

    Google Scholar 

  31. Schumm, S. A. U. S. geol. Surv. prof. Pap. 545-H (1963).

  32. Holeman, J. N. Wat. Resour. Res. 4, 737–747 (1968).

    Article  ADS  Google Scholar 

  33. Garrels, R. M. & Mackenzie, F. T. Evolution of Sedimentary Rocks (Norton, New York, 1971).

    Google Scholar 

  34. Milliman, J. D. & Meade, R. H. J. Geol. 91, 1–21 (1983).

    Article  ADS  Google Scholar 

  35. Meade, R. H. J. Geol. 90, 235–252 (1982).

    Article  ADS  Google Scholar 

  36. Kuenen, P. J. Marine Geology (Wiley, New York, 1950).

    Google Scholar 

  37. Thomas, H. A History of the World (Harper & Row, New York, 1979).

    Google Scholar 

  38. Douglas, I. Nature 215, 925–928 (1967).

    Article  ADS  Google Scholar 

  39. Judson, S. Am. Scient. 56, 356–374 (1968).

    Google Scholar 

  40. Judson, S. Geol. Soc. Am. Abstr. 3, 615 (1971).

    Google Scholar 

  41. Meade, R. H. Bull. geol. Soc. Am. 80, 1265–1274 (1969).

    Article  CAS  Google Scholar 

  42. Gregor, B. Nature 228, 273–275 (1970).

    Article  ADS  CAS  Google Scholar 

  43. Garrels, R. M., Lerman, A. & Mackenzie, F. T. Am. Scient. 64, 306–315 (1976).

    ADS  Google Scholar 

  44. Gregor, C. A. EOS 64, 344 (1983).

    Article  Google Scholar 

  45. Schwab, F. L. Geology 4, 723–727 (1976).

    Article  ADS  Google Scholar 

  46. Schopf, T. J. M. Paleoceanography (Harvard University Press, Cambridge, 1980).

    Book  Google Scholar 

  47. Reading, H. G. Proc. geol. Ass. 93, 321–350 (1982).

    Article  Google Scholar 

  48. Potter, P. E. J. Geol. 86, 13–33 (1978).

    Article  ADS  Google Scholar 

  49. Gilluly, J. Bull. geol. Soc. Am. 82, 2382–2396 (1971).

    Article  Google Scholar 

  50. Ludwig, W. J. et al. J. geophys. Res. 71, 2121–2137 (1966).

    Article  ADS  Google Scholar 

  51. Schweller, W. J. & Kulm, L. D. Mar. Geol. 28, 271–291 (1978).

    Article  ADS  Google Scholar 

  52. Moore, J. C. Geology 3, 530–532 (1975).

    Article  ADS  Google Scholar 

  53. Scholl, D. W. & Marlow, M. S., Econ. Palaeont. Miner. Spec. Publ. 19, 193–211 (1974).

    Google Scholar 

  54. Scholl, D. W. & Vallier, T. L. in Expanding Earth Symposium, Sydney (ed. Carey, S. W.)235–245 (University of Tasmania, Hobart, 1983).

    Google Scholar 

  55. Lisitsyn, A. P., Lukashin, V. N., Gurvich Ye, G., Gordeyev, V. V. & Demina, L. L. Geochem. Inter. 19, 102–110 (1982).

    Google Scholar 

  56. Beoecker, W. A. & Peng, T.-H. Tracers in the Sea (Lamont-Doherty Geological Observatory, Palisades, 1982).

    Google Scholar 

  57. Piper, D. Z. Geochim. cosmochim. Acta. 38, 1007–1022 (1974).

    Article  ADS  CAS  Google Scholar 

  58. Shimizu, H. & Masuda, A. Nature 266, 346–348 (1977).

    Article  ADS  CAS  Google Scholar 

  59. Garrels, R. M. & Mackenzie, F. T. Nature 231, 382–383 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLennan, S., Taylor, S. Continental freeboard, sedimentation rates and growth of continental crust. Nature 306, 169–172 (1983). https://doi.org/10.1038/306169a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306169a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing