Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sulphur isotopic compositions of deep-sea hydrothermal vent animals

Abstract

Dense animal assemblages consisting of vestimentiferan worms, brachyuran crabs and giant clams have been found clustered around deep-sea hydrothermal vents in unusual ecosystems that appear to be independent of photosynthetically produced nutrients. Reduced compounds such as H2S, H2 and CH4 are spewed from the vents into the cold, oxygenated bottom water1,28, and it has been suggested that chemoautotrophic bacteria are important primary producers of organic nutrients ultilized by the vent fauna2–7. In some instances, sulphur-oxidizing bacteria may perform this function through growth as symbionts8,9 within tissues of host animals (clams and vestimentiferans). To gain further insight into sulphur metabolism in these unusual food webs, we have analysed the stable sulphur isotope ratios (34S/32S) of Pacific vent fauna and find δ34S values close to 0‰. These values approximate the +1 to +4‰ range observed for sulphur-bearing minerals at the vents, and indicate that this specialized fauna utilizes sulphur derived from the vents (rather than from seawater sulphate) during growth and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Edmond, J. M., Von Damm, K. L., McDuff, R. E. & Measures, C. I. Nature 297, 187–191 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Rau, G. H. Science 213, 338–340 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Rau. G. H. Nature 289, 484–485 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Williams, P. M., Smith, K. L., Druffel, E. M. & Linick, T. W. Nature 292, 448–449 (1982).

    Article  ADS  Google Scholar 

  5. Felbeck, H. & Somero, G. N. Trend. biochem. Sci. 7, 201–204 (1982).

    Article  CAS  Google Scholar 

  6. Ruby, E. G., Wirsen, C. O. & Jannasch, H. W. Appl. envir. Microbiol. 42, 317–324 (1981).

    CAS  Google Scholar 

  7. Tuttle, J. H., Wirsen, C. O. & Jannasch, H. W. Mar. Biol. 73, 293–299 (1983).

    Article  Google Scholar 

  8. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Science 213, 340–341 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Cavanaugh, C. M. Nature 302, 58–61 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Tabatabai, M. A. & Bremner, J. M. Agron. J. 64, 40–44 (1972).

    Article  CAS  Google Scholar 

  11. Fry, B., Scalan, R. S., Winter, J. K. & Parker, P. L. Geochim. cosmochim. Acta 46, 1121–1124 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Thode, H. G., Monster, J. & Dunford, H. B. Geochim. cosmochim. Acta 25, 159–174 (1961).

    Article  ADS  CAS  Google Scholar 

  13. Kaplan, I. R., Emery, K. O. & Rittenberg, S. C. Geochim. cosmochim. Acta 27, 297–331 (1963).

    Article  ADS  CAS  Google Scholar 

  14. Mekhtiyeva, V. L., Pankina, R. G. & Gavrilov, Ye. Ya. Geochim. Int. 1976, 82–87 (1976).

    Google Scholar 

  15. Schiff, J. A. & Frankhauser, H. in Biology of Inorganic Nitrogen and Sulphur (eds Bothe, H. & Trebst, A) 153–168 (Springer, Berlin, 1981).

    Book  Google Scholar 

  16. Huovinen, J. A. & Gustafsson, B. E. Biochim. biophys. Acta 136, 441–447 (1967).

    Article  CAS  Google Scholar 

  17. Schneider, J. F. & Westly, J. J. biol. Chem. 244, 5735–5744 (1969).

    CAS  PubMed  Google Scholar 

  18. Curtis, C. G., Bartholomew, T. C., Rose, F. A. & Dodgson, K. S. Biochem. Pharmac. 21, 2313–2321 (1972).

    Article  CAS  Google Scholar 

  19. Ivanov, M. V., Gogotova, G. I., Matrosov, A. G. & Zyakun, A. M. Mikrobiologiya 45, 757–762 (1976).

    CAS  Google Scholar 

  20. Karavaiko, G. I., Miller, Yu. M., Kapustin, O. A. & Pivovarova, T. A. Mikrobiologiya 49, 849–854 (1980).

    CAS  Google Scholar 

  21. Kaplan, I. R. & Rittenberg, S. C. J. gen. Microbiol. 34, 195–212 (1964).

    Article  CAS  Google Scholar 

  22. Chambers, L. A. & Trudinger, P. A. Geomicrobiol. J. 1, 249–293 (1979).

    Article  CAS  Google Scholar 

  23. Arp, A. J. & Childress, J. J. Science 219, 295–297 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Powell, M. A. & Somero, G. N. Science 219, 297–299 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Terwilliger, R. C., Terwilliger, N. B. & Arp, A. Science 219, 981–983 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Fry, B. Fish. Bull. (in the press).

  27. Styrt, M. M. et al. Earth planet. Sci. Lett. 53, 382–390 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Welhan, J. A. & Craig, H. Geophys. Res. Lett. 6, 829–831 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fry, B., Gest, H. & Hayes, J. Sulphur isotopic compositions of deep-sea hydrothermal vent animals. Nature 306, 51–52 (1983). https://doi.org/10.1038/306051a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306051a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing