Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heat shock proteins, first major products of zygotic gene activity in mouse embryo

Abstract

In many species, the early post-fertilization development of the egg appears to occur mainly under maternal control and does not require transcription of the embryonic genome1. In the mouse this situation is restricted to the one-cell stage; activation of the embryonic genome occurs at the late two-cell stage2–4 and results in a drastic change in the spectrum of proteins synthesized. This activation is preceded by a decrease in the overall synthesis of proteins at the end of the one-cell stage5–7 and the appearance, at the early two-cell stage, of a set of new polypeptides of molecular weight 70,000 (70K) (refs 2, 8, 9). This can be compared with the series of events that occur after hyperthermia in differentiated cells10–13. Heat shock results in an arrest of most transcription and translation; subsequently, expression of a limited set of genes, the heat shock genes, precedes the overall reactivation of cellular genome. Here we show that the 70K early two-cell-specific proteins are identical to two of the mouse heat shock proteins, HSP 68 and HSP 70.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davidson, E. H. Gene Activity in Early Development (Academic, New York, 1976).

    Google Scholar 

  2. Flach, G., Johnson, M. H., Braude, P. R., Taylor, R. A. S. & Bolton, V. N. EMBO J. 1, 681–686 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Magnuson, T. & Epstein, C. J. Biol. Rev. 56, 369–408 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Johnson, M. H. Biol. Rev. 56, 463–498 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Biggers, J. D. J. Reprod. Fert. Suppl. 14, 41–54 (1971).

    CAS  Google Scholar 

  6. Petzoldt, U., Hoppe, P. C. & Illmensee, K. Wilhem Roux Arch. dev. Biol. 189, 215–219 (1980).

    Article  Google Scholar 

  7. Goddard, M. J. & Pratt, H. P. J. Embryol. exp. Morph. 73, 111–123 (1983).

    CAS  PubMed  Google Scholar 

  8. Van Blerkom, J. & Brockway, G. O. Devl. Biol. 44, 148–157 (1975).

    Article  CAS  Google Scholar 

  9. Howe, C. C. & Solter, D. J. Embryol. exp. Morph. 52, 209–225 (1979).

    CAS  PubMed  Google Scholar 

  10. Ashburner, M. & Bonner, J. J. Cell 17, 241–254 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Schlesinger, M. J., Aliperti, G. & Kelley, P. M. Trends biochem. Sci. 7, 222–225 (1982).

    Article  CAS  Google Scholar 

  12. Arrigo, A. P. Molec. gen. Genet. 178, 517–524 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Schlesinger, M. J., Ashburner, M. & Tissières, A. (eds) Cold Spring Harbor Symp. Heat-Shock from Bacteria to Man (Cold Spring Harbor Laboratory, New York, 1982).

  14. Bensaude, O. & Morange, M. EMBO J. 2, 173–177 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cleveland, D. W., Fischer, S. G., Kirschner, M. W. & Laemmli, U. K. J. biol. Chem. 252, 1102–1106 (1977).

    CAS  PubMed  Google Scholar 

  16. Levey, I. L., Troike, D. E. & Brinster, R. L. J. Reprod. Fert. 50, 147–150 (1977).

    Article  CAS  Google Scholar 

  17. Levey, I. L. & Brinster, R. L. J. exp. Zool. 203, 351–360 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Graziosi, G., Micali, F., Marzari, R., De Cristini, F. & Savoini, A. J. exp. Zool. 214, 141–145 (1980).

    Article  CAS  Google Scholar 

  19. Savoini, A., Micali, F., De Cristini, F. & Graziosi, G. Wilhem Roux Arch. dev. Biol. 190, 161–167 (1981).

    Article  CAS  Google Scholar 

  20. Schultz, G. A. & Tucker, E. B. in Development in Mammals Vol. 1 (ed. Johnson, M. H.) 69–97 (North-Holland, Amsterdam, 1977).

    Google Scholar 

  21. Bravo, R. & Knowland, J. Differentiation 13, 101–108 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Bienz, M. & Gurdon, J. B. Cell 29, 811–819 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Kelley, P. M. & Schlesinger, M. J. Molec. cell. Biol. 2, 267–274 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morimoto, R. & Fodor, E. J. cell. Biochem. Suppl. 7 A, 128 (1983).

    Google Scholar 

  25. Komar, A. J. Reprod. Fert. 35, 433–443 (1973).

    Article  CAS  Google Scholar 

  26. Dyban, A. P. & Khozhai, L. I. Bull. exp. Biol. Med. 89, 528–530 (1980).

    Article  Google Scholar 

  27. Kaufman, M. H. Nature 302, 258–260 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Whittingham, D. G. J. Reprod. Fert. Suppl. 14, 7–22 (1971).

    CAS  Google Scholar 

  29. Whitten, W. K. in Advances in the Biosciences Vol. 6, (ed. Raspe, G.) 129–139 (Pergamon, Oxford, 1971).

    Google Scholar 

  30. O';Farrell, P. H. J. biol. Chem. 250, 4007–4021 (1975).

    Google Scholar 

  31. Ansorge, W. Analyt. Biochem. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensaude, O., Babinet, C., Morange, M. et al. Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature 305, 331–333 (1983). https://doi.org/10.1038/305331a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305331a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing