Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrodynamic instabilities and photochemical reactions

Abstract

Although many photochemical structures obtained in irradiated solutions have been investigated recently1–4, the origin of these patterns has remained unclear. Evidence has been presented which suggests that these structures are due to evaporative cooling. Using the Schlieren technique, photographs of prepatterns have been obtained before illumination and we show here that these prepatterns are associated with convective motions in the bulk. As a result, the hydrodynamic motions must be given proper consideration in the interpretation of spatio-temporal chemical patterns. The photochemical reaction also provides a useful way of visualizing slow convective motions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Möckel, P. Naturwissenschaften 64, 224 (1977).

    ADS  Article  Google Scholar 

  2. 2

    Kagan, M., Levi, A. & Avnir, D. Naturwissenschaften 69, 548–549 (1982).

    ADS  Article  Google Scholar 

  3. 3

    Avnir, D., Kagan, M. & Levi, A. Naturwissenschaften 70, 144–145 (1983).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Gimenez, M. & Micheau, J. C. Naturwissenschaften 70, 90 (1983).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Nicolis, G. & Prigogine, I. Self Organization in Non-Equilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  6. 6

    Zhabotinsky, A. M. & Zaikin, A. N. J. theor. Biol. 40, 45–61 (1973).

    CAS  Article  Google Scholar 

  7. 7

    Showalter, K. J. chem. Phys. 73, 3735–3742 (1980).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Orban, M. J. Am. chem. Soc. 102, 4311–4314 (1980).

    CAS  Article  Google Scholar 

  9. 9

    Boiteux, A. & Hess, B. Ber. Bunsenges Phys. Chem. 84, 392–398 (1980).

    CAS  Article  Google Scholar 

  10. 10

    Pacault, A. & Vidal, C. J. chim. Phys. 79, 691–707 (1982).

    CAS  Article  Google Scholar 

  11. 11

    Berg, J. C., Acrivos, A. & Boudart, M. Adv. chem. Engng 6, 61–122 (1966).

    CAS  Article  Google Scholar 

  12. 12

    Toepler, A. Ann. Phys. 131, 33, 180 (1867).

    Article  Google Scholar 

  13. 13

    Avnir, D. & Kagan, M. Naturwissenschaften (in the press).

  14. 14

    Laplante, J. P. & Pottier, R. H. J. phys. chem. 86, 4759–4766 (1982).

    CAS  Article  Google Scholar 

  15. 15

    Epstein, I. R., Morgan, M., Steel, C. & Valdes-Aguilera, O. J. phys. Chem. (in the press).

  16. 16

    D'Arco, A., Charmet, J. C. & Cloitre, M. Rev. Phys. Appl. 17, 89–93 (1982).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Micheau, J., Gimenez, M., Borckmans, P. et al. Hydrodynamic instabilities and photochemical reactions. Nature 305, 43–45 (1983). https://doi.org/10.1038/305043a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing