Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of a p53 polymorphism in the development of human papilloma-virus-associated cancer

The E6 oncoprotein derived from tumour-associated human papillomaviruses (HPVs) binds to and induces the degradation of the cellular tumour-suppressor protein p53. A common polymorphism that occurs in the p53 amino-acid sequence results in the presence of either a proline or an arginine at position 72. The effect of this polymorphism on the susceptibility of p53 to E6-mediated degradation has been investigated and the arginine form of p53 was found to be significantly more susceptible than the proline form. Moreover, allelic analysis of patients with HPV-associated tumours revealed a striking overrepresentation of homozygous arginine-72 p53 compared with the normal population, which indicated that individuals homozygous for arginine 72 are about seven times more susceptible to HPV-associated tumorigenesis than heterozygotes. The arginine-encoding allele therefore represents a significant risk factor in the development of HPV-associated cancers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of the rate of HPV-18 E6 mediated degradation of p53Pro and p53Arg in vitro.
Figure 2: Comparison of HPV-18 E6 induced degradation of p53Pro and p53Arg in vivo.
Figure 3: HPV-16 and HPV-11 E6 preferentially target p53Arg over p53Pro for degradation in vivo.
Figure 4: HPV-16 E6-induced degradation of p53Pro and p53Arg is mediated by the proteasome.
Figure 5: Comparison of the susceptibility of p53 to E6-mediated degradation in a cell line containing endogenous p53Pro and p53Arg alleles and HPV-.16 E6.
Figure 6: PCR detection of p53 alleles.


  1. 1

    zur Hausen, H. & Schneider, A. in The Papovaviridae (eds Salzman, N. P. & Howley, P. M.) 245–263 (Plenum, New York, (1987)).

    Google Scholar 

  2. 2

    Dyson, N., Howley, P. M., Münger, K. & Harlow, E. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–936 (1989).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Scheffner, M., Werness, B. A., Huibregste, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    CAS  Article  Google Scholar 

  4. 4

    Werness, B. A., Levine, A. J. & Howley, P. M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79 (1990).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Crook, T., Wrede, D. & Vousden, K. H. p53 point mutation in HPV negative human cervical carcinoma cell lines. Oncogene 6, 873–875 (1991).

    CAS  PubMed  Google Scholar 

  6. 6

    Scheffner, M., Münger, K., Byrne, J. C. & Howley, P. M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl Acad. Sci. USA 88, 5523–5527 (1991).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Vogelstein, B. & Kinzler, K. W. p53 function and dysfunction. Cell 70, 523–526 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Medcalf, E. A. & Milner, J. Targeting and degradation of p53 by E6 of human papillomavirus type 16 is preferential for the 1620+ p53 conformation. Oncogene 8, 2847–2851 (1993).

    CAS  PubMed  Google Scholar 

  9. 9

    Marston, N. J., Crook, T. & Vousden, K. H. Interaction of p53 with MDM2 is independent of E6 and does not mediate wild type transformation suppressor function. Oncogene 9, 2707–2716 (1994).

    CAS  PubMed  Google Scholar 

  10. 10

    Thomas, M., Massimi, P., Jenkins, J. & Banks, L. HPV-18 E6 mediated inhibition of p53 binding activity is independent of E6 induced degradation. Oncogene 10, 261–268 (1995).

    CAS  PubMed  Google Scholar 

  11. 11

    Matlashewski, G. J. et al. Primary structure polymorphism at amino acid residue 72 of human p53. Mol. Cell. Biol. 7, 961–963 (1987).

    CAS  Article  Google Scholar 

  12. 12

    Birgander, R. et al. P53 polymorphisms and haplotypes in lung cancer. Carcinogenesis 16, 2233–2236 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Moreau, F. & Matlashewski, G. Molecular analysis of different allelic variants of wild-type human p53. Biochem. Cell. Biol. 70, 1014–1019 (1992).

    CAS  Article  Google Scholar 

  14. 14

    Crook, T., Ludwig, R. L., Marston, N., Willkomm, D. & Vousden, K. H. Sensitivity of p53 lysine mutants to ubiquitin-directed degradation targeted by human papillomavirus E6. Virology 217, 285–292 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Goldberg, A. The mechanism and function of ATP dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203, 285–292 (1992).

    Article  Google Scholar 

  16. 16

    Hershko, D. & Ciechanover, A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61, 761–807 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Rock, K. et al. Inhibitors of the proteasome block degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

    CAS  Article  Google Scholar 

  18. 18

    Milner, J. & Medcalf, E. A. Cotranslation of activated mutant p53 with wild type drives the wild type p53 into the mutant conformation. Cell 65, 765–774 (1991).

    CAS  Article  Google Scholar 

  19. 19

    Sakamoto, H., Lewis, M. S., Kodama, H., Appella, E. & Sakaguchi, K. Specific sequences from the carboxy terminus of human p53 gene product form anti-parallel tetramers in solution. Proc. Natl Acad. Sci. USA 91, 8974–8978 (1994).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Androphy, E. J., Hubbert, N. L., Schiller, J. T. & Lowy, D. R. Identification ofthe HPV16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO J. 6, 989–992 (1987).

    CAS  Article  Google Scholar 

  21. 21

    Butz, K. et al. Functional p53 protein in human papillomavirus-positive cancer cells. Oncogene 10, 927–936 (1995).

    CAS  PubMed  Google Scholar 

  22. 22

    Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Zhang, W., Hu, G. & Deisseroth, A. Polymorphism at codon 72 of the p53 gene in human acute myelogenous leukemia. Gene 117, 271–275 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Vogan, K. et al. Absence of p53 gene mutations in primary neuroblastomas. Cancer Res. 53, 5269–5273 (1993).

    CAS  PubMed  Google Scholar 

  25. 25

    Beckman, G. et al. Is p53 polymorphism maintained by natural selection? Hum. Hered. 44, 266–270 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Weston, A. et al. Determination of the allelic frequencies of an L-myc and a p53 polymorphism in human lung cancer. Carcinogenesis 14, 583–587 (1994).

    Article  Google Scholar 

  27. 27

    Murata, M. et al. Analysis of a germ line polymorphism of the p53 gene in lung cancer patients: discrete results with smoking history. Carcinogenesis 17, 261–264 (1996).

    CAS  Article  Google Scholar 

  28. 28

    Kawajiri, K., Nakachi, K., Imai, K., Watanabe, J. & Hayashi, S. Germ line polymorphisma of p53 and CYP1A1 genes involved in human lung cancer. Carcinogenesis 14, 1085–1089 (1993).

    CAS  Article  Google Scholar 

  29. 29

    Jin, X. et al. Higher lung cancer risk for young African-Americans with the Pro/Pro p53 genotype. Carcinogenesis 16, 2205–2208 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Purdie, K. et al. Malignant transformation of cutaneous lesions in renal allograft patients: a role for human papillomavirus. Cancer Res. 53, 5328–5333 (1993).

    CAS  PubMed  Google Scholar 

  31. 31

    Boyle, J., Briggs, J. D., Mackie, R. M., Junor, B. J. R. & Aitchison, T. C. Cancer, warts and sunshine in renal transplant patients. Cancer Res. 53, 5328–5333 (1993).

    Google Scholar 

  32. 32

    Blessing, K. et al. Histopathology of skin lesions in renal allograft recipients—an assessment of viral features and dysplasia. Histopathology 14, 129–139 (1989).

    CAS  Article  Google Scholar 

  33. 33

    Benton, E. C. et al. in Immunodeficiency and the Skin (eds Fritsch, P., Schuler, G. & Hintner, H.) 168–177 (Karger, Basel, (1989)).

    Google Scholar 

  34. 34

    Glover, M. T., Proby, C. M. & Leigh, I. M. Skin cancer in renal transplant patients. Cancer Bull. 45, 220–224 (1993).

    Google Scholar 

  35. 35

    Shamanin, V. et al. Specific types of human papillomavirus found in benign proliferations and carcinomas of the skin in immunosuppressed patients. Cancer Res. 54, 4610–4613 (1994).

    CAS  PubMed  Google Scholar 

  36. 36

    Berkhout, R. J. M. et al. Detection and typing of epidermodysplasia verruciformis-associated human papillomavirus types in cutaneous cancers from renal transplant recipients. J. Clin. Microbiol. 33, 690–695 ((1995)).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Shamanin, V. et al. Human papillomavirus infections in nonmelanoma skin cancer patients from renal transplant recipients and nonimmunosuppressed patients. J. Natl Canc. Inst. 88, 802–811 (1996).

    CAS  Article  Google Scholar 

  38. 38

    Li, X. & Coffino, P. High-risk human papillomavirus E6 has two distinct binding sites within p53, of which only one determines degradation. J. Virol. 70, 4509–4516 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Walker, K. K. & Levine, A. J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl Acad. Sci. USA 93, 15335–15340 (1996).

    ADS  CAS  Article  Google Scholar 

  40. 40

    Sakamuro, D., Sabbatini, P., White, E. & Prendergast, G. C. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15, 887–898 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Yu, H. et al. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945 (1994).

    CAS  Article  Google Scholar 

  42. 42

    Sun, X.-F. et al. Anovel p53 germline alteration identified in a late onset breast cancer kindred. Oncogene 13, 407–411 (1996).

    CAS  PubMed  Google Scholar 

  43. 43

    Chittenden, T. et al. Aconserved domain in bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 14, 5589–5596 (1995).

    CAS  Article  Google Scholar 

  44. 44

    Banks, L., Matlashewski, G. & Crawford, L. Isolation of human p53 specific monoclonal antibodies and their use in the study of human p53 expression. Eur. J. Biochem. 159, 529–534 (1986).

    CAS  Article  Google Scholar 

  45. 45

    Manos, M. M. et al. The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7, 209–214 (1989).

    CAS  Google Scholar 

  46. 46

    Snijders, P. J. et al. The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. J. Gen. Virol. 71, 173–181 (1990).

    CAS  Article  Google Scholar 

  47. 47

    Shamanin, V., Delius, H. & de Villiers, E.-M. Development of a broad spectrum PCR assay for papillomaviruses and its application in screening lung cancer biopsies. J. Gen. Virol. 75, 1149–1156 (1994).

    CAS  Article  Google Scholar 

  48. 48

    Chan, S.-Y., Delius, H., Halpern, A. L. & Bernard, H.-U. Analysis of genomic sequences of 95 papillomavirus types: uniting typing phylogeny and taxonomy. J. Virol. 69, 3074–3083 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank P. Spink for assistance with the development of HPV screening and typing; I. Jacobs and H. Stevens for cervical and normal DNA; D. Pim for comments on the manuscript; and A.Norman for statistical analysis. G.M. acknowledges the support from the National Cancer Institute of Canada with funds from the Canadian Cancer Society and NSERC. C.H. is the recipient of a MRC Clinical Training Fellowship. G.M., A.S. and L.B. thank L. Crawford for insightful discussions.

Author information



Corresponding authors

Correspondence to Greg Matlashewski or Lawrence Banks.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Storey, A., Thomas, M., Kalita, A. et al. Role of a p53 polymorphism in the development of human papilloma-virus-associated cancer. Nature 393, 229–234 (1998).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing