Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single sodium channels from rat brain incorporated into planar lipid bilayer membranes


A voltage- and time-dependent conductance for sodium ions is responsible for the generation of impulses in most nerve and muscle cells1. Changes in the sodium conductance are produced by the opening and closing of many discrete transmembrane channels2. We present here the first report of electrical recordings from voltage-dependent sodium channels incorporated into planar lipid bilayers. In bilayers with many channels, batrachotoxin3 (BTX) induced a steady-state sodium current that was blocked by saxitoxin4 (STX) at nanomolar concentrations. All channels appeared in the bilayer with their STX blocking sites facing the side of vesicle addition, allowing us to define that as the extracellular side. Current fluctuations due to the opening and closing of single BTX-activated sodium channels were voltage-dependent (unit conductance, 30 pS in 0.5 M NaCl): the channels closed at large hyperpolarizing potentials. Slower fluctuations of the same amplitude, due to the blocking and unblocking of individual channels, were seen after addition of STX. Block of the sodium channels by STX was voltage-dependent, with hyperpolarizing potentials favouring block. The voltage-dependent gating, ionic selectivity and neurotoxin sensitivity suggest that these are the channels that normally underlie the sodium conductance change during the nerve impulse.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 116, 497–506 (1952).

    Article  CAS  Google Scholar 

  2. Sigworth, F. J. & Neher, E. Nature 287, 447–449 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Albuquerque, E. X. & Daly, J. in Receptors and Recognition Ser. B, Vol. 1 (ed. Cuatrecasas, P.) 297–338 (Chapman & Hall, London, 1976).

    Google Scholar 

  4. Narahashi, T. Physiol. Rev. 54, 813–866 (1974).

    Article  CAS  Google Scholar 

  5. Mueller, P., Rudin, D. O., Tien, H. T. & Wescott, W. C. J. phys. Chem. 67, 534–535 (1963).

    Article  CAS  Google Scholar 

  6. Krueger, B. K., Ratzlaff, R. W., Strichartz, G. R. & Blaustein, M. P. J. Membrane Biol. 50, 287–310 (1979).

    Article  CAS  Google Scholar 

  7. Miller, C. J. Membrane Biol. 40, 1–23 (1978).

    Article  CAS  Google Scholar 

  8. Miller, C. & Racker, E. J. Membrane Biol. 30, 283–300 (1976).

    Article  CAS  Google Scholar 

  9. Cohen, F. S., Zimmerberg, J. & Finkelstein, A. J. gen. Physiol. 75, 251–270 (1980).

    Article  CAS  Google Scholar 

  10. Khodorov, B. I. in Membrane Transport Processes Vol. 2 (eds Tosteson, D. C., Ovchinnikov, Y. A. & Latorre, R.) 153–174 (Raven, New York, 1978).

    Google Scholar 

  11. Huang, L.-Y. M., Moran, N. & Ehrenstein, G. Proc. natn. Acad. Sci. U.S.A. 79, 2082–2085 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Wagner, H.-H. & Ulbricht, W. Pflüger's Arch. ges. Physiol. 359, 297–315 (1975).

    Article  CAS  Google Scholar 

  13. Krueger, B. K. & Blaustein, M. P. J. gen. Physiol. 76, 287–313 (1980).

    Article  CAS  Google Scholar 

  14. Tamkun, M. M. & Catterall, W. A. Molec. Pharmac. 19, 78–86 (1981).

    CAS  Google Scholar 

  15. Ritchie, J. M. & Rogart, R. B. Rev. Physiol. Biochem. Pharmac. 79, 1–50 (1977).

    Article  CAS  Google Scholar 

  16. Baer, M., Best, P. M. & Reuter, H. Nature 263, 344–345 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Cohen, I. S. & Strichartz, G. R. Biophys. J. 17, 275–279 (1977).

    Article  CAS  Google Scholar 

  18. Colatsky, T. J. & Gadsby, D. C. J. Physiol., Lond. 306, 20P (1980).

    Google Scholar 

  19. Cohen, C. J., Bean, B. P., Colatsky, T. J. & Tsien, R. W. J. gen. Physiol. 78, 383–411 (1981).

    Article  CAS  Google Scholar 

  20. Huang, L.-Y. M., Catterall, W. A. & Ehrenstein, G. J. gen. Physiol. 73, 839–854 (1979).

    Article  CAS  Google Scholar 

  21. Frelin, C., Vigne, P. & Lazdunski, M. Eur. J. Biochem. 119, 437–442 (1981).

    Article  CAS  Google Scholar 

  22. Hille, B. J. gen. Physiol. 59, 637–658 (1972).

    Article  ADS  CAS  Google Scholar 

  23. Ebert, G. A. & Goldman, L. J. gen. Physiol. 68, 327–340 (1976).

    Article  CAS  Google Scholar 

  24. Begenisich, T. B. & Cahalan, M. D. J. Physiol., Lond. 307, 217–242 (1980).

    Article  CAS  Google Scholar 

  25. Patlak, J. & Horn, R. J. gen. Physiol. 79, 333–351 (1982).

    Article  CAS  Google Scholar 

  26. Quandt, F. N. & Narahashi, T. Proc. natn. Acad. Sci. U.S.A. 79, 6732–6736 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Hille, B. J. gen. Physiol. 66, 535–560 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krueger, B., Worley, J. & French, R. Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature 303, 172–175 (1983).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing