Letter | Published:

Dispersion of the ras family of transforming genes to four different chromosomes in man

Naturevolume 302pages839842 (1983) | Download Citation

Subjects

Abstract

Cellular transforming genes (c-onc) are evolutionarily conserved vertebrate DNA segments which have been identified by two different approaches. One group of these cellular genes has been defined by their close homology to the transforming genes of the acute transforming retroviruses (v-onc)1–3. The second group, which represent activated forms of normal cellular genes1,4–9, has been detected by the ability of certain genes from animal and human tumours to induce focal transformation of tissue culture cells. Investigation of the possibility that the same cellular gene might have given rise to both a retroviral and a tumour transforming gene revealed that two of the c-onc genes identified by transfecting genomic DNA from human tumours to murine 3T3 fibroblasts were related to the transforming genes of two closely related acute transforming retroviruses, Harvey murine sarcoma virus (HaMuSV) and Kirsten murine sarcoma virus (KiMuSV)10–12. The transforming genes of HaMuSV and KiMuSV are derived from two members of a cellular onc gene family called ras, which is a rather divergent group of normal vertebrate genes originally found by analysis of the cellular homologues of the v-onc genes of HaMuSV and KiMuSV13. Four distinct human cellular homologues of v-Ha-ras and v-Ki-ras (designated c-Ha-ras and c-Ki-ras, respectively) have been characterized14; two (c-Ha-ras-1 and c-Ha-ras-2) are more closely related to v-Ha-ras, while the others (c-Ki-ras-1 and c-Ki-ras-2) are more closely related to v-Ki-ras. On ligation with a retroviral long terminal repeat, the c-Ha-ras-1 gene of both rat and human have been shown to induce in vitro transformation of mouse NIH 3T3 cells by DNA transfection15,16. This gene and c-Ki-ras-2 have also been isolated as activated transforming genes in human tumours10–12. An understanding of the genetic relationship of the c-ras genes and additional genetic loci possibly involved in neoplastic transformation would be greatly facilitated by placement of the ras genes on the human chromosome map. Using DNA analysis of rodent×human somatic cell hybrids, we have now assigned each of the human genes to a different chromosome.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Cooper, G. M. Science 217, 801–806 (1982).

  2. 2

    Klein, G. (ed.) Advances in Viral Oncology Vol. 1 (Raven, New York, 1982).

  3. 3

    Coffin, J. M. et al. J. Virol. 40, 953–957 (1981).

  4. 4

    Shih, C., Shilo, B., Goldfarb, M. P., Dannenberg, A. & Weinberg, R. A. Proc. natn. Acad. sci. U.S.A. 76, 5714–5718 (1979).

  5. 5

    Cooper, G. M., Okenquist, S. & Silverman, L. Nature 284, 418–421 (1980).

  6. 6

    Shih, C., Padhy, L. C., Murray, M. J. & Weinberg, R.A. Nature 290, 261–264 (1981).

  7. 7

    Krontiris, T. G. & Cooper, G. M. Proc. natn. Acad. sci. U.S.A. 78, 1181–1184 (1981).

  8. 8

    Perucho, M. et al. Cell 27, 467–476 (1981).

  9. 9

    Lane, M. A., Sainten, A. & Cooper, G. M. Proc. natn. Acad. sci. U.S.A. 78, 5185–5189 (1981).

  10. 10

    Der, C. J., Krontiris, T. G. & Cooper, G. M. Proc. natn. Acad. sci. U.S.A. 79, 3637–3640 (1982).

  11. 11

    Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Nature 297, 474–478 (1982).

  12. 12

    Santos, E., Tronick, S. R., Aaronson, S., Pulciano, S. & Barbacid, M. Nature 298, 343–348 (1982).

  13. 13

    Ellis, R. W. et al. Nature 292, 506–511 (1981).

  14. 14

    Chang, E. H., Gonda, M. A., Ellis, R. W., Scolnick, E. M. & Lowy, D. R. Proc. natn. Acad. sci. U.S.A. 79, 4848–4852 (1982).

  15. 15

    DeFeo, D. et al. Proc. natn. Acad. sci. U.S.A. 78, 3328–3332 (1981).

  16. 16

    Chang, E. H., Furth, M. E., Scolnick, E. M. & Lowy, D. R. Nature 297, 479–484 (1982).

  17. 17

    O'Brien, S. J., Simonson, J. M. & Eichelberger, M. in Techniques in Somatic Cell Genetics (ed. Shay, J. W.) 342–370 (Plenum, New York, 1982).

  18. 18

    Bobro, M. & Crass, J. Nature 251, 77–79 (1971).

  19. 19

    Lemons, R. S., Nash, W. G., O'Brien, S. J., Benveniste, R. E. & Sherr, C. J. Cell 14, 995–1005 (1978).

  20. 20

    McBride, O. W. et al. Nature 300, 773–774 (1982).

  21. 21

    Chattopadhyay, S. K. et al. Nature 296, 361–363 (1982).

  22. 22

    McCoy, M. S. et al. Nature 302, 79–81 (1983).

  23. 23

    Shimizu, K., Goldfarb, M., Perucho, M. & Wigler, M. Proc. natn. Acad. sci. U.S.A. 80, 383–387 (1983).

  24. 24

    Deisseroth, A. et al. Cell 12, 205–218 (1977).

  25. 25

    Deisseroth, A. et al. Proc. natn. Acad. Sci. U.S.A. 75, 1456–1460 (1978).

  26. 26

    Hutton, J. J. Biochem. Genet. 3, 507–515 (1969).

  27. 27

    Popp, R. A. J. Hered. 60, 126–133 (1969).

  28. 28

    Leder, A., Swan, D., Ruddle, F., D'Eustachio, P. & Leder, P. Nature 293, 196–199 (1981).

  29. 29

    Popp, R. A., Lalley, P. A., Whitney, J.B.Ill & Anderson, W. F. Proc. natn. Acad. sci. U.S.A. 78, 6362–6366 (1981).

  30. 30

    Rowley, J. D. Nature 301, 290–291 (1983).

  31. 31

    Ohno, S. Nature 244, 259–262 (1973).

  32. 32

    Ohno, S. Reproduction in Mammals Vol. 6, 1–31 (Cambridge University Press, 1976).

  33. 33

    Ryder, L. P. & Svejgaard, A. An. Rev. Genet. 15, 169–187 (1981).

  34. 34

    Svejgaard, A., Jersild, C., Staut-Nielsen, L. & Bodmer, W. F. Tissue Antigens 4, 95–105 (1974).

  35. 35

    Lilly, F. & Pincus, T. Adv. Cancer Res. 17, 231 (1973).

  36. 36

    Simonetta, P. et al. Nature 300, 539–542 (1982).

  37. 37

    Tabin, C. J. et al. Nature 300, 143–149 (1982).

  38. 38

    Reddy, E. P., Reynold, R. K., Santos, E. & Barbacid, M. Nature 300, 149–152 (1982).

  39. 39

    Taparowsky, E. et al. Nature 300, 762–765 (1982).

  40. 40

    Klein, G. Cell 321, 311–315 (1983).

  41. 41

    Martinville, B., de, Giacalone, J., Shih, C., Weinberg, R. A. & Franke, U. Science 219, 498–500 (1983).

  42. 42

    Sakaguchi, A. et al. Science 219, 1081–1083 (1983).

Download references

Author information

Affiliations

  1. Laboratory of Viral Carcinogenesis, National Cancer Institute, NIH

    • Stephen J. O'Brien
  2. Biological Carcinogenesis Program, NCI-FCRF, Frederick, Maryland, 21701, USA

    • William G. Nash
  3. Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20014, USA

    • Jerome L. Goodwin
    •  & Esther H. Chang
  4. Dermatology Branch, National Cancer Institute, NIH, Bethesda, Maryland, 20205, USA

    • Douglas R. Lowy

Authors

  1. Search for Stephen J. O'Brien in:

  2. Search for William G. Nash in:

  3. Search for Jerome L. Goodwin in:

  4. Search for Douglas R. Lowy in:

  5. Search for Esther H. Chang in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/302839a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.