Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Xyloadenosine analogue of (A2′p)2A inhibits replication of herpes simplex viruses 1 and 2

Abstract

Molecules of the structure ppp(A2′p)2A containing a 2′→5′ phosphodiester bond, commonly abbreviated as 2-5A, are synthesized in interferon-treated virally-infected cells1 and have been implicated in several systems as contributing to interferon's antiviral activity2–7. The 2-5A binds to and subsequently activates an endogenous endonuclease, ultimately resulting in degradation of RNA 3–5,8–10. We have been interested in the use of 2-5A analogues to achieve antiviral activity without the use of interferon. For this approach to be successful, analogues must be synthesized with an increased stability (native 2-5A is rapidly degraded by cellular phosphodiesterases11–14) and with increased ability to enter intact cells. Removal of the highly-negative charged 5′ terminal phosphates from ppp(A2′p)2A results in formation of the ‘core’ species, (A2′p)2A, which should be able to penetrate intact cells more readily. While Kimchi et al. have shown that 2-5A core has an antimitogenic effect in mouse spleen lymphocytes15,16 and 3T3 fibroblasts17, Williams and Kerr have reported lack of antiviral activity against Semliki Forest virus or encephalomyocarditis virus by exogenously-administered 2-5A core3. We have previously determined that (xyloA2′p)2xyloA (abbreviated as xylo 2-5A core), the xyloadenosine analogue of the 5′-terminally dephosphorylated 2-5A core, is over 100 times more stable than the parent 2-5A core species18. We now report that this xylo 2-5A core inhibits replication of herpes simplex viruses 1 and 2 in vitro, with greater than 100 times the activity of the parent 2-5A core. The mechanism of antiviral action of the 2-5A core analogue appears to involve a pathway different from that activated by the parent 5′ triphosphorylated 2-5A species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, B. R. G., Golgher, R. R., Brown, R. E., Gilbert, C. S. & Kerr, I. M. Nature 282, 582–586 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Williams, B. R. G., Golgher, R. R. & Kerr, I. M. FEBS Lett. 105, 47–52 (1979).

    Article  CAS  Google Scholar 

  3. Williams, B. R. G. & Kerr, I. M. Nature 276, 88–90 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Eppstein, D. A. & Samuel, C. E. Virology 89, 240–251 (1978).

    Article  CAS  Google Scholar 

  5. Baglioni, C., Minks, M. A. & Maroney, P. A. Nature 273, 684–687 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Nilsen, T. W., Wood, D. L. & Baglioni, C. Nature 286, 176–180 (1980).

    Article  ADS  Google Scholar 

  7. Nilsen, T. W., Maroney, P. A. & Baglioni, C. J. Virol. 42, 1039–1045 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ratner, L. et al. Biochem. biophys. Res. Commun. 81, 947–954 (1978).

    Article  CAS  Google Scholar 

  9. Clemens, M. J. & Williams, B. R. G. Cell 13, 565–572 (1978).

    Article  CAS  Google Scholar 

  10. Ball, L. A. & White, C. N. Virology 93, 348–356 (1979).

    Article  CAS  Google Scholar 

  11. Eppstein, D. A., Peterson, T. C. & Samuel, C. E. Virology 98, 9–19 (1979).

    Article  CAS  Google Scholar 

  12. Minks, M. A., Benvin, S., Maroney, P. A. & Baglioni, C. Nucleic Acids Res. 6, 767–780 (1979).

    Article  CAS  Google Scholar 

  13. Williams, B. R. G., Kerr, I. M., Gilbert, C. S., White, C. N. & Bail, L. A. Eur. J. Biochem. 92, 455–462 (1978).

    Article  CAS  Google Scholar 

  14. Schmidt, A. et al. Proc. natn. Acad. Sci. U.S.A. 76, 4788–4792 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Kimchi, A., Shure, H. & Revel, M. Nature 282, 849–851 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Kimchi, A., Shure, H. & Revel, M. Eur. J. Biochem. 114, 5–10 (1981).

    Article  CAS  Google Scholar 

  17. Kimchi, A. et al. FEBS Lett. 134, 212–216 (1981).

    Article  CAS  Google Scholar 

  18. Eppstein, D. A. et al. J. biol. Chem. 257, 13390–13397 (1982).

    CAS  PubMed  Google Scholar 

  19. Gosselin, G. & Imbach, J. L. Tetrahedron Lett. 22, 4699–4702 (1981).

    Article  CAS  Google Scholar 

  20. De Clercq, E. et al. J. infect. Dis. 141, 563–574 (1980).

    Article  CAS  Google Scholar 

  21. Elion, G. B. et al. Proc. natn. Acd. Sci. U.S.A. 74, 5716–5720 (1977).

    Article  ADS  CAS  Google Scholar 

  22. De Rudder, J., Andreeff, F. & De Garilhe, M. P. C. r. hébd. Seanc. Acad. Sci., Paris 264D, 677–680 (1967).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eppstein, D., Barnett, J., Marsh, Y. et al. Xyloadenosine analogue of (A2′p)2A inhibits replication of herpes simplex viruses 1 and 2. Nature 302, 723–724 (1983). https://doi.org/10.1038/302723a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302723a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing