Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Caulobacter flagellin mRNA segregates asymmetrically at cell division

Abstract

Molecular processes which promote the spatial localization of subcellular components are fundamental to cell development and differentiation. At various stages in development unequal segregation of molecular information must occur to result in the differentiated characteristics which distinguish cell progeny. Biological attributes of the dimorphic bacterium, Caulobacter crescentus, provide an experimental system permitting examination of the generation of asymmetry at the molecular level1. When a Caulobacter cell divides, two different daughter cells are produced—a motile swarmer cell with a polar flagellum and a non-motile cell with a static appendage referred to as a stalk. The two cell types are distinct with respect to surface morphology2–5, developmental potential1,6, protein composition7 and biosynthetic capabilities8,9. One of the more conspicuous manifestations of asymmetric expression of macromolecules in this system, the flagellum, has been studied extensively3,10–13. We have cloned the flagellin genes of Caulobacter14 and report here the use of these sequences as probes to demonstrate that (1) the level of flagellin mRNA is regulated during the cell cycle in a pattern coincident with flagellum polypeptide synthesis and (2) flagellin mRNA synthesized before cell division is segregated with progeny swarmer cells. This provides molecular evidence of specific partitioning of an mRNA at the time of cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bender, R., Agabian, N. & Shapiro, L. in The Molecular Genetics of Development (eds Leighton, T. & Loomis, W. F.) 17–41 (Academic, New York, 1980).

    Google Scholar 

  2. Lagenaur, C., Farmer, S. & Agabian, N. Virology 77, 401–407 (1976).

    Article  Google Scholar 

  3. Lagenaur, C. & Agabian, N. J. Bact. 135, 1062–1069 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Smit, J. & Agabian, N. Devl. Biol, 89, 237–247 (1982).

    Article  CAS  Google Scholar 

  5. Smit, J. & Agabian, N. J. Cell Biol. 95, 41–49 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Agabian, N., Evinger, M. & Parker, G. J. Cell Biol. 81, 123–126 (1979).

    Article  CAS  Google Scholar 

  7. Milhausen, M. & Agabian, N. J. Bact. 148, 163–173 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Degnen, S. T. & Newton, A. J. molec. Biol. 63, 671–680 (1972).

    Article  Google Scholar 

  9. Mansour, J. D., Henry, S. & Shapiro, L. J. Bact. 141, 262–269 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Osley, M. A., Sheffrey, M. & Newton, A. Cell 12, 393–400 (1979).

    Article  Google Scholar 

  11. Weissborn, A., Steinman, H. M. & Shapiro, L. J. biol. Chem. 257, 2067–2074 (1982).

    Google Scholar 

  12. Johnson, R. & Ely, B. J. Bact. 137, 627–634 (1978).

    Google Scholar 

  13. Gill, P. R. & Agabian, N. J. Bact. 150, 925–133 (1982).

    Google Scholar 

  14. Milhausen, M., Gill, P., Parker, G. & Agabian, N. Proc. natn. Acad. Sci. U.S.A. 79, 6847–6851 (1982).

    Article  CAS  ADS  Google Scholar 

  15. Newton, A. Proc. natn. Acad. Sci. U.S.A. 69, 447–451 (1972).

    Article  CAS  ADS  Google Scholar 

  16. Evinger, M. thesis, Univ. Washington (1978).

  17. Amemiya, K., Wu, C. & Shapiro, L. J. biol. Chem. 252, 4157–4165 (1977).

    CAS  PubMed  Google Scholar 

  18. Evinger, M. & Agabian, N. J. Bact. 132, 294–301 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas, P. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    Article  CAS  ADS  Google Scholar 

  20. Rigby, P. W., Dieckman, M., Thodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Poindexter, J. S. & Hagenzieker, J. G. Can. J. Microbiol. 27, 704–719 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Evinger, M. & Agabian, N. Proc. natn. Acad. Sci. U.S.A. 76, 175–178 (1979).

    Article  CAS  ADS  Google Scholar 

  23. Losick, R. & Pero, J. Cell 25, 582–584 (1982).

    Article  Google Scholar 

  24. Haldenwang, W. & Losick, R. Nature 7, 85–124 (1979).

    Google Scholar 

  25. Smith, G. R. Cell 24, 599–600 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Trucksis, M. & Depew, R. Proc. natn. Acad. Sci. U.S.A. 78, 2164–2168 (1981).

    Article  CAS  ADS  Google Scholar 

  27. Strome, S. & Young, E. T. J. molec. Biol. 136, 433–450 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milhausen, M., Agabian, N. Caulobacter flagellin mRNA segregates asymmetrically at cell division. Nature 302, 630–632 (1983). https://doi.org/10.1038/302630a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302630a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing