Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of de novo DNA methylation in the glucocorticoid resistance of a T-lymphoid cell line

Abstract

A correlation has been shown between changes in the methylation pattern of cytosine residues in DNA and the expression of specific genes in differentiated tissues1–6. The pattern of DNA methylation is conserved, through cell division, by a maintenance methylase7–9 but the mechanism by which a given pattern of methylation is established is unknown. De novo methylation of foreign DNA molecules has been shown to occur in several systems10–12, and may serve as a signal to arrest gene expression. Conversely, treatment of cultured cell lines with 5-azacytidine results in DNA hypomethylation and leads to transcriptional activation of previously unexpressed genes13–18. The results described here demonstrate spontaneous de novo methylation of DNA in a T-lymphoid cell line previously treated with 5-azacytidine to generate glucocorticoid sensitivity. This de novo methylation is accompanied by the acquisition of the glucocorticoid-resistant phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilks, A. F., Cozens, P. J., Mattaj, I. W. & Jost, J. P. Proc. natn. Acad. Sci. U.S.A. 79, 4252–4255 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Naveh-Many, T. & Cedar, H. Proc. natn. Acad. Sci. U.S.A. 78, 4246–4250 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Rogers, J. & Wall, R. Proc. natn. Acad. Sci. U.S.A. 78, 7497–5701 (1981).

    Article  Google Scholar 

  4. Shen, C. J. & Maniatis, T. Proc. natn. Acad. Sci. U.S.A. 77, 6634–6638 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Van der Ploeg, L. H. T. & Flavell, R. A. Cell 19, 947–958 (1980).

    Article  CAS  Google Scholar 

  6. Mandel, J. L. & Chambon, P. Nucleic Acids Res. 7, 2081–2103 (1979).

    Article  CAS  Google Scholar 

  7. Jones, P. A. & Taylor, S. M. Nucleic Acids Res. 12, 2933–2947 (1981).

    Article  Google Scholar 

  8. Gruenbaum, Y., Cedar, H. & Razin, A. Nature 295, 620–622 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Stein, R., Gruenbaum, Y., Pollack, Y., Razin, A. & Cedar, H. Proc. natn. Acad. Sci. U.S.A. 79, 61–65 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Pellicer, A. et al. Science 209, 1414–1422 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Sutter, D. & Doerfter, W. Proc. natn. Acad. Sci. U.S.A. 77, 253–256 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Drahovsky, D., Kaul, S., Boehm, T. L. J. & Wacker, A. Biochim. biophys. Acta 607, 201–205 (1980).

    Article  CAS  Google Scholar 

  13. Compere, S. J. & Palmiter, R. D. Cell 25, 233–240 (1981).

    Article  CAS  Google Scholar 

  14. Harris, M. Cell 29, 483–492 (1982).

    Article  CAS  Google Scholar 

  15. Taylor, S. M. & Jones, P. A. Cell 17, 771–779 (1979).

    Article  CAS  Google Scholar 

  16. Groudine, M., Eisenman, R. & Weintraub, H. Nature 292, 311–317 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Niwa, O. & Sugahara, J. Proc. natn. Acad. Sci. U.S.A. 78, 6290–6294.

  18. Clough, D. W., Kunkel, L. M. & Davidson, R. L. Science 216, 70–73 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Gasson, J. C. & Bourgeois, S. J. Cell Biol. 96, 409–415 (1983).

    Article  CAS  Google Scholar 

  20. Bourgeois, S. & Newby, R. Cancer Res. 39, 4749–4751 (1979).

    CAS  PubMed  Google Scholar 

  21. Vanyushin, B. F., Tkacheva, S. G. & Belozersky, A. N. Nature 225, 948–949 (1970).

    Article  ADS  CAS  Google Scholar 

  22. Wigler, M., Levy, D. & Perucho, M. Cell 24, 33–40 (1981).

    Article  CAS  Google Scholar 

  23. Gjerset, R. A. & Martin, D. W. J. biol. Chem. 257, 8581–8583 (1982).

    CAS  PubMed  Google Scholar 

  24. Holliday, R. & Pugh, J. E. Science 187, 226–232 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Razin, A. & Riggs, A. D. Science 210, 604–610 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Jahner, D. et al. Nature 298, 623–628 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Creusot, F., Acs, G. & Christman, J. K. J. biol Chem. 257, 2041–2048 (1982).

    CAS  PubMed  Google Scholar 

  28. Pellicer, A., Wigler, M., Axel, R. & Silverstein, S. Cell 14, 133–141 (1978).

    Article  CAS  Google Scholar 

  29. Bolen, P. L., Grant, D. M., Swinton, D., Boynton, J. E. & Gillham, N. W. Cell 28, 335–343 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasson, J., Ryden, T. & Bourgeois, S. Role of de novo DNA methylation in the glucocorticoid resistance of a T-lymphoid cell line. Nature 302, 621–623 (1983). https://doi.org/10.1038/302621a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302621a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing