Letter | Published:

Runaway instability in accretion disks orbiting black holes

Naturevolume 302pages597599 (1983) | Download Citation

Subjects

Abstract

The runaway instability (very fast, ‘catastrophic’, mass exchange) operates in close binaries when the more massive star overflows its Roche lobe1,2. The Roche lobe radius shrinks due to the mass exchange more rapidly than the radius of the star. The star keeps overflowing its Roche lobe and continuously loses mass. It has been found3 that a critical equipotential surface similar to the Roche lobe also exists in the black hole accretion disk system. The existence of this lobe is not connected with the gravity of the disk but is due to general relativistic effects in the gravitational field of the black hole alone. We argue here that all the accretion disks which overflow their Roche lobes and have their masses greater than a few per cent of the mass of the central hole are unstable with respect to runaway instability. This may be very important for quasars and other active galactic nuclei.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Morton, D. C. Astrophys. J. 132, 146 (1960).

  2. 2

    Smak, J. Acta astr. 12, 28 (1962).

  3. 3

    Abramowicz, M., Jaroszyński, M. & Sikora, M. Astr. Astrophys. 63, 221 (1978).

  4. 4

    Paczyński, B. & Wiita, P. J. Astr. Astrophys. 88, 23 (1982).

  5. 5

    Paczyński, B. Acta astr. 30, 347 1980

  6. 6

    Paczyński, B., Bisnovatyi-Kogan Acta astr. 31, 283 (1981).

  7. 7

    Muchotrzeb, B. & Paczyński, B. Acta astr. 32, 1 (1982)

  8. 8

    Abramowicz, M. A. & Zurek, W. H. Astrophys. J. 246, 314 (1982).

  9. 9

    Abramowicz, M., Henderson, P. F. & Ghosh, P. Mon. Not. R. astr. Soc. (in the press).

  10. 10

    Ostirker, J. P. Astrophys. J. 140, 1067 (1964).

  11. 11

    Rees, M. J., Begelman, M. C., Blandford, R. D. & Phinney, E. S. Nature 295, 17 (1982).

  12. 12

    Will, G. M. Astrophys. J. 191, 521 (1974).

  13. 13

    Will, C. M. Astrophys. J. 196, 41 (1975).

  14. 14

    Bailey, M. E. Mon. Not. R. astr. Soc. 200, 247 (1982).

  15. 15

    Abramowicz, M., Calvani, M. & Nobili, L. Astrophys. J. 242, 772 (1980).

  16. 16

    Wiita, P. J. Astrophys. J. 256, 666 (1982).

  17. 17

    Paczyński, B. Acta astr. 28, 91 (1978).

  18. 18

    Sander, R. H. Nature 294, 427 (1981).

  19. 19

    Katz, J. I. & Piran, T. Astrophys. Lett. 23, 11 (1982).

  20. 20

    Calvani, M. & Nobili, L. Astrophys. Space Sci. 79, 387 (1981)

  21. 21

    Abramowicz, M. Nature 294, 235 (1981).

  22. 22

    Jaroszyński, M., Abramowicz, M. A. & Paczyński, B. Acta astr. 30, 1 (1980).

  23. 23

    Pringle, J. E. A. Rev. Astr. Astrophys. 19, 137 (1981).

  24. 24

    Paczyński, B. Astr. Gesell. Mitt. 57, 27 (1982)

  25. 25

    Wiita, P. J. Comments Astrophys. 9, 251 (1982).

Download references

Author information

Affiliations

  1. Department of Astrophysics, Oxford University, South Parks Road, Oxford, OX1 3RQ, UK

    • Marek A. Abramowicz
    • , Massimo Calvani
    •  & Luciano Nobili
  2. Copernicus Astronomical Center, Warszawa, Poland

    • Marek A. Abramowicz
  3. Istituto di Astronomia, Universita di Padova

    • Massimo Calvani
  4. Istituto di Fisica, Universita di Padova, Italy

    • Luciano Nobili

Authors

  1. Search for Marek A. Abramowicz in:

  2. Search for Massimo Calvani in:

  3. Search for Luciano Nobili in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/302597a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.