Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity


As first clearly demonstrated by the experiments of Wiesel and Hubel1, the developing visual cortex is exquisitely sensitive to sensory deprivation. Temporary closure of one eye of a kitten during a critical period that extends from 3 weeks to 3 months of age results in a dramatic cortical reorganization such that most neurones, originally binocularly driven, are dominated exclusively by the open eye. Recently, attention has been directed to chemical factors which may influence the degree of plasticity during the critical period. The work of Kasamatsu and Pettigrew2–6 suggests that cortical catecholamines, especially noradrenaline (NA), are essential for the normal plastic response to visual deprivation. In an effort to clarify the role of NA in visual cortical plasticity, we have monocularly deprived kittens whose cortex had been depleted of catecholamines by the neurotoxin 6-hydroxydopamine (6-OHDA)7–9. We used two strategies to deplete cortical NA: the first, pioneered by Kasamatsu et al.5, utilized osmotic minipumps to deliver 6-OHDA to visual cortex; the second involved systemic neonatal injections of 6-OHDA, a technique which has proved effective in rodents10–12. We found, using high-pressure liquid chromatography (HPLC), that both techniques produced a substantial reduction in the level of cortical NA. However, single unit recording in area 17 revealed that the plastic response to monocular deprivation (MD) was only diminished in the kittens depleted by minipump.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 26, 1003–1017 (1963).

    CAS  Article  Google Scholar 

  2. 2

    Kasamatsu, T. & Pettigrew, J. D. Science 194, 206–209 (1976).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Pettigrew, J. D. & Kasamatsu, T. Nature 271, 761–763 (1978).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Kasamatsu, T. & Pettigrew, J. D. J. comp. Neurol 185, 139–162 (1979).

    CAS  Article  Google Scholar 

  5. 5

    Kasamatsu, T., Pettigrew, J. D. & Ary, M., J. comp. Neurol. 185, 163–182 (1979).

    CAS  Article  Google Scholar 

  6. 6

    Kasamatsu, T., Pettigrew, J. D. & Ary, M. J. Neurophysiol. 45, 254–266 (1981).

    CAS  Article  Google Scholar 

  7. 7

    Ungerstedt, J. Eur. J. Pharmac. 5, 107–110 (1968).

    CAS  Article  Google Scholar 

  8. 8

    Bloom, F. E., Algeri, A., Groppetti, A., Revuelta, A. & Costa, E. Science 166, 1284–1286 (1969).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Uretsky, N. J. & Iverson, L. L. J. Neurochem. 17, 269–278 (1970).

    CAS  Article  Google Scholar 

  10. 10

    Clark, D. W., Laverty, R. & Phelan, E. L. Br. J. Pharmacol. 44, 233–243 (1972).

    CAS  Article  Google Scholar 

  11. 11

    Sach, C. J. Neurochem. 20, 1753–1760 (1973).

    Article  Google Scholar 

  12. 12

    Sachs, C. & Jonsson, G. Brain Res. 99, 277–291 (1975).

    CAS  Article  Google Scholar 

  13. 13

    Daniels, J. D., Norman, J. L. & Pettigrew, J. D. Expl. Brain Res. 29, 155–172 (1977).

    CAS  Article  Google Scholar 

  14. 14

    Blasdel, G. G. & Pettigrew, J. D. J. Neuorophysiol. 42, 1692–1710 (1979).

    CAS  Article  Google Scholar 

  15. 15

    Hubel, D. H. & Wiesel, T. N. J. Physiol., Land. 160, 106–154 (1962).

    CAS  Article  Google Scholar 

  16. 16

    Anton, A. H. & Sayre, D. F. J. Pharmac. exp. Ther. 138, 360–375 (1962).

    CAS  Google Scholar 

  17. 17

    Keller, R., Oke, A., Mefford, I. & Adams, R. N. Life Sci. 19, 995–1004 (1976).

    CAS  Article  Google Scholar 

  18. 18

    Cannon, W. B. & Rosenblueth, A. The Supersensitivity of Denervated Structures (Macmillan, New York, 1949).

    Google Scholar 

  19. 19

    Sporn, J. R., Wolfe, B. B., Harden, T. R., Kendell, T. & Molinoff, P. B. Molec. Pharmac. 13, 1170–1180 (1977).

    CAS  Google Scholar 

  20. 20

    Harik, S. J., Bradford Duckrow, R., LaManna, J. C., Rosenthal, M., Sharma, V. K. & Banerjee, S. P., J. Neurosci. 1, 641–649 (1981).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bear, M., Paradiso, M., Schwartz, M. et al. Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity. Nature 302, 245–247 (1983).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links