Letter | Published:

Primary structures of β- and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences

Nature volume 301, pages 251255 (20 January 1983) | Download Citation

Subjects

Abstract

The nicotinic acetylcholine receptor (AChR) from fish electric organ and mammalian skeletal muscle is the best characterized neurotransmitter receptor (reviewed in refs 1–3). The AChR from the electroplax of the ray Torpedo californica consists of five subunits present in a molar stoichiometry of α2βγδ (refs 4–6); the apparent molecular weights of the α-, β-, γ- and δ-subunits are 40,000 (40K), 50K, 60K and 65K, respectively7–11. Knowledge of the primary structures of these constituent polypeptides would facilitate the understanding of the molecular mechanism underlying the function of the neurotransmitter receptor. Recently, we have cloned cDNA for the α-subunit precursor of the T. californica AChR and have deduced the primary structure of this polypeptide from the nucleotide sequence of the cloned cDNA12. Here we report the cloning and nucleotide analysis of cDNAs for the AChR β- and δ-subunit precursors. The primary structures of the two polypeptides deduced from the cDNA sequences reveal conspicuous amino acid sequence homology among these and the α-subunits. The three subunits contain several highly conserved regions which may be essential for the receptor function or inter-summit interaction.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & A. Rev. Biochem. 47, 317–357 (1978).

  2. 2.

    in Cell Surface Reviews Vol. 6 (eds Cotman, C. W., Poste, G. & Nicolson, G. L.) 191–260 (North-Holland, Amsterdam, 1980).

  3. 3.

    & A. Rev. Biochem. 51, 491–530 (1982).

  4. 4.

    & Biochemistry 17, 2035–2038 (1978).

  5. 5.

    , & Biochemistry 18, 4465–4470 (1979).

  6. 6.

    , , & Science 208, 1454–1457 (1980).

  7. 7.

    , & Biochem. biophys. Res. Commun. 61, 997–1003 (1974).

  8. 8.

    , , , Cold Spring Harb. Symp. quant. Biol. 40, 193–202 (1975).

  9. 9.

    , & Eur. J. Biochem. 83, 335–340 (1978).

  10. 10.

    & Biochemistry 18, 301–307 (1979).

  11. 11.

    , , & Biochemistry 18, 1845–1854 (1979).

  12. 12.

    et al. Nature 299, 793–797 (1982).

  13. 13.

    & Molec. cell. Biol. 2, 161–170 (1982).

  14. 14.

    & Meth. Enzym. 65, 499–560 (1980).

  15. 15.

    & Nature 263, 211–214 (1976).

  16. 16.

    et al. Nature 290, 20–26 (1981).

  17. 17.

    , , & Cell 8, 163–182 (1976).

  18. 18.

    , & Cell 10, 571–585 (1977).

  19. 19.

    , & Cell 21, 627–638 (1980).

  20. 20.

    et al. Science 195, 389–391 (1977).

  21. 21.

    & J. Cell Biol. 67, 852–862 (1975).

  22. 22.

    , , , & Ann. N.Y. Acad. Sci. 343, 1–16 (1980).

  23. 23.

    , , & Proc. natn. Acad. Sci. U.S.A. 79, 4466–4470 (1982).

  24. 24.

    , & in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3, 229–249 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).

  25. 25.

    , & in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3, 345–352 (National Biomedical Research Foundation, Silver Spring, Maryland, 1979).

  26. 26.

    & Proc. natn. Acad. Sci. U.S.A. 77, 755–759 (1980).

  27. 27.

    , , & J. biol. Chem. 256, 8635–8645 (1981).

  28. 28.

    , & Proc. natn. Acad. Sci. U.S.A. 79, 188–192 (1982).

  29. 29.

    J. gen. Physiol. 54, 245s–264s (1969).

  30. 30.

    Biochem. Soc. Symp. 40, 17–26 (1974).

  31. 31.

    & Biochemistry 16, 4513–4520 (1977).

  32. 32.

    , & Biochem. biophys. Res. Commun. 79, 692–699 (1977).

  33. 33.

    et al. Proc. natn. Acad. Sci. U.S.A. 70, 3305–3310 (1973).

  34. 34.

    et al. Science 200, 494–502 (1978).

  35. 35.

    , , & Nucleic Acids Res. 10, 1755–1769 (1982).

  36. 36.

    , , , & Proc. natn. Acad. Sci. U.S.A. 75, 1299–1303 (1978).

  37. 37.

    et al. Nature 278, 423–427 (1979).

  38. 38.

    & Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).

  39. 39.

    , & Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).

  40. 40.

    et al. Proc. natn. Acad. Sci. U.S.A. 79, 5793–5797 (1982).

Download references

Author information

Affiliations

  1. Department of Medical Chemistry, Kyoto University Faculty of Medicine, Kyoto 606, Japan

    • Masaharu Noda
    • , Hideo Takahashi
    • , Tsutomu Tanabe
    • , Mitsuyoshi Toyosato
    • , Sho Kikyotani
    •  & Shosaku Numa
  2. Pharmaceutical Institute, Keio University School of Medicine, Tokyo 160, Japan

    • Tadaaki Hirose
    • , Michiko Asai
    • , Hideaki Takashima
    •  & Seiichi Inayama
  3. Department of Biology, Kyushu University Faculty of Science, Fukuoka 812, Japan

    • Takashi Miyata

Authors

  1. Search for Masaharu Noda in:

  2. Search for Hideo Takahashi in:

  3. Search for Tsutomu Tanabe in:

  4. Search for Mitsuyoshi Toyosato in:

  5. Search for Sho Kikyotani in:

  6. Search for Tadaaki Hirose in:

  7. Search for Michiko Asai in:

  8. Search for Hideaki Takashima in:

  9. Search for Seiichi Inayama in:

  10. Search for Takashi Miyata in:

  11. Search for Shosaku Numa in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/301251a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.