Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human class II major histocompatibility antigen β-chains are derived from at least three loci

Abstract

Class II antigens of the major histocompatibility complex (MHC) consist of two glycosylated, membrane-integrated polypeptide chains1. These cell surface-expressed molecules are involved in several immunobiological events involving cell–cell interactions2,3, most of which seem to require that genetically identical class II antigens, or other molecules controlled by the same region of the MHC, are expressed on the interacting cells4. The extensive genetic polymorphism of the class II antigens5 has rendered analyses in the human system of the number of non-allelic species of class II antigens difficult, although several laboratories have reported the existence of at least two types of human class II antigens6–9. Here we present the results of experiments using restriction enzyme digestions and separation of DNA from individuals homozygous for the MHC followed by hybridization to human class II antigen α-10,11 and β-12–14 chain cDNA probes. While the α -chain probe gave only a single hybridization band, the various β -chain probes revealed a more complex pattern that is consistent with the existence of at least three separate β -chain genes or pseudogenes in the human MHC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kämpe, O. et al. Nobel Symp. Vol. 55 (eds Möller, G. & Möller, E.) (Plenum, New York, in the press).

  2. Thomas, D. W., Clement, L. & Shevach, E. M. Immun. Rev. 40, 181–204 (1978).

    Article  CAS  Google Scholar 

  3. Miller, S. D., Sy, M. & Claman, H. N. J. exp. Med. 145, 1071–1076 (1977).

    Article  CAS  Google Scholar 

  4. Katz, D. H., Hamaoka, T., Dorf, M. E., Maurer, P. H. & Benacerraf, B. J. exp. Med. 138, 734–739 (1973).

    Article  CAS  Google Scholar 

  5. Bodmer, W. F. Br. med. Bull. 34, 3 (1978).

    Google Scholar 

  6. Markert, M. L. & Cresswell, P. Proc. natn. Acad. Sci. U.S.A. 77, 6101–6104 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Tosi, R., Tanigaki, N., Centis, D., Ferrara, G. B. & Pressman, D. J. exp. Med. 148, 1592–1611 (1978).

    Article  CAS  Google Scholar 

  8. Park, M. S., Terasaki, P. I., Nakata, S. & Aoki, D. Histocompatibility Testing, 845–860 (UCLA Press, Los Angeles, 1981).

    Google Scholar 

  9. Corte, G. et al. Nature 292, 357–359 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Gustafsson, K. et al. Scand. J. Immun. (in the press).

  11. Larhammar, D. et al. Cell 30, 153–161 (1982).

    Article  CAS  Google Scholar 

  12. Wiman, K. et al. Proc. natn. Acad. Sci. U.S.A. 79, 1703–1707 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Larhammar, D. et al. Scand. J. Immun. 14, 617–622 (1981).

    Article  CAS  Google Scholar 

  14. Larhammar, D. et al. Proc. natn. Acad. Sci. U.S.A. 79, 3687–3691 (1982).

    Article  ADS  CAS  Google Scholar 

  15. van Someren, H. et al. Proc. natn. Acad. Sci. U.S.A. 71, 962–965 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Shows, T. B. & Brown, J. A. Proc. natn. Acad. Sci. U.S.A. 72, 2125–2130 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Lee, J.S., Trowsdale, J. & Bodmer, W.F. Proc. natn. Acad. Sci. U.S.A. 79, 545–549 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Silver, J. & Ferrone, S. Nature 279, 436–439 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Korman, A. J., Knudsen, P. J., Kaufman, J. F. & Strominger, J. L. Proc. natn. Acad. Sci. U.S.A. 79, 1844–1848 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Auffray, C., Korman, A. J., Roux-Dosseto, M., Bono, R. & Strominger, J. L. Proc. natn. Acad. Sci. U.S.A. (in the press).

  21. Cami, B., Brégégère, F., Abastado, J. P. & Kourilsky, P. Nature 291, 673–675 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Steinmetz, M. et al. Cell 25, 683–692 (1981).

    Article  CAS  Google Scholar 

  23. Steinmetz, M., Winoto, A., Minard, K. & Hood, L. Cell 28, 489–498 (1982).

    Article  CAS  Google Scholar 

  24. Kaufman, J. F. & Strominger, J. L. Nature 297, 624–697 (1982).

    Article  Google Scholar 

  25. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhme, J., Owerbach, D., Denaro, M. et al. Human class II major histocompatibility antigen β-chains are derived from at least three loci. Nature 301, 82–84 (1983). https://doi.org/10.1038/301082a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301082a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing