Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ATP-dependent unwinding of double helix in closed circular DNA by RecA protein of E. coli

Abstract

RecA protein is an essential component directly involved in general genetic recombination in Escherichia coli1,2. In the presence of ATP, RecA protein promotes in vitro pairing of homologous DNA molecules3–9, unidirectional elongation of heteroduplex joints7,10,12 and concerted reciprocal strand exchange13,14. These activities of the protein can explain some important steps in genetic recombination (see ref. 15 for review). When negative-superhelical closed-circular double-stranded DNA (form I DNA) is a substrate, RecA protein catalyses a cycle of sequential reactions: formation and dissociation of D-loops, and inactivation and reactivation of the duplex as a substrate for D-loop formation16,55. We now present evidence that, in the presence of ATP, RecA protein unwinds the double helix of form I DNA to produce positive-superhelical turns which can be relaxed by eukaryotic topoisomerase I and that, by this process, closed-circular double-stranded DNA with an extraordinarily large number of negative-superhelical turns can be formed in physiological conditions. This ATP-dependent unwinding of the double-helix might promote dissociation of D-loops in form I DNA, followed by inactivation of the form I DNA and the elongation of heteroduplex joints, as suggested by our previous studies16,17,55.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clark, A. J. & Margulies, A. D. Proc. natn. Acad. Sci. U.S.A. 53, 451–459 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Kobayashi, I. & Ikeda, H. Molec. gen. Genet. 166, 25–29 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Shibata, T., DasGupta, C., Cunningham, R. P. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 76, 1638–1642 (1979).

    Article  ADS  CAS  Google Scholar 

  4. McEntee, K., Weinstock, G. M. & Lehman, I. R. Proc. natn. Acad. Sci. U.S.A 76, 2615–2619 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Cunningham, R. P., DasGupta, C., Shibata, T. & Radding, C. M. Cell 20, 223–235 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Cassuto, E., West, S. C., Mursalim, J., Conlon, S. & Howard-Flanders, P. Proc. natn. Acad. Sci. U.S.A. 77, 3962–3966 (1980).

    Article  ADS  CAS  Google Scholar 

  7. DasGupta, C., Shibata, T., Cunningham, R. P. & Radding, C. M. Cell 22, 437–446 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Shibata, T. et al. J. biol. Chem. 256, 7565–7572 (1981).

    CAS  PubMed  Google Scholar 

  9. Cunningham, R. P., Wu, A. M., Shibata, T., DasGupta, C. & Radding, C. M. Cell 24, 213–223 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Kahn, R., Cunningham, R. P., DasGupta, C. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 78, 4786–4790 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Cox, M. M. & Lehman, I. R. Proc. natn. Acad. Sci. U.S.A. 78, 3433–3437 (1981), 6018–6022 (1981).

    Article  ADS  CAS  Google Scholar 

  12. DasGupta, C. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 79, 762–766 (1982).

    Article  ADS  CAS  Google Scholar 

  13. DasGupta, C., Wu, A. M., Kahn, R., Cunningham, R. P. & Radding, C. M. Cell 25, 507–516 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. West, S. C., Cassuto, E. & Howard-Flanders, P. Proc. natn. Acad. Sci. U.S.A. 78, 2100–2104.

  15. Radding, C. M. A. Rev. Biochem. 47, 847–880 (1978).

    Article  CAS  Google Scholar 

  16. Shibata, T., Ohtani, T., Chang, P. K. & Ando, T. J. biol. Chem. 257, 370–376 (1982).

    CAS  PubMed  Google Scholar 

  17. Ohtani, T., Shibata, T., Iwabuchi, M., Nakagawa, K. & Ando, T. J. Biochem, Tokyo 91, 1767–1775 (1982).

    Article  CAS  Google Scholar 

  18. Holloman, W. K. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 73, 3910–3914 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Gellert, M., Mizuuchi, K., O'Dea, M. H. & Nash, H. A. Proc. natn. Acad. Sci. U.S.A. 73, 3872–3876 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Hays, J. B. & Boehmer, S. Proc. natn. Acad. Sci. U.S.A. 75, 4125–4129 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Kikuchi, Y. & Nash, H. Cold Spring Harb. Symp. quant. Biol. 43, 1099–1109 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Raina, J. L. & Ravin, A. W. Molec. gen. Genet. 176, 171–181 (1979).

    CAS  PubMed  Google Scholar 

  23. Cunningham, R. P., Shibata, T. DasGupta, C. & Radding, C. M. Nature 281, 191–195 (1979); 282, 426 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Shibata, T., Cunningham, R. P. & Radding, C. M. J. biol. Chem. 256, 7557–7564 (1981).

    CAS  PubMed  Google Scholar 

  25. Champoux, J. J. A. Rev. Biochem. 47, 449–479 (1978).

    Article  CAS  Google Scholar 

  26. Gellert, M. A. Rev. Biochem. 50, 879–910 (1981).

    Article  CAS  Google Scholar 

  27. Fuller, W. & Waring, M. J. Ber. Bunsenges. Phys. Chem. 68, 805–808 (1964).

    Article  CAS  Google Scholar 

  28. Wang, J. C. J. molec. Biol. 89, 783–801 (1974).

    Article  CAS  PubMed  Google Scholar 

  29. Pulleyblank, D. E. & Morgan, A. R. J. molec. Biol. 91, 1–13 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Bauer, W. R. A. Rev. Biophys. Bioneng 7, 287–313 (1978).

    Article  CAS  Google Scholar 

  31. Wiegand, R. C., Godson, G. N. & Radding, C. M. J. biol. Chem. 250, 8848–8855 (1975).

    CAS  PubMed  Google Scholar 

  32. Shishido, K. & Ando, T. Agric. biol. Chem. 39, 673–681 (1975).

    CAS  Google Scholar 

  33. Beattie, K. L., Wiegand, R. C. & Radding, C. M. J. molec. Biol. 116, 783–803 (1977).

    Article  CAS  PubMed  Google Scholar 

  34. Abdel-Monem, M. & Hoffmann-Berling, H. Eur. J. Biochem. 65, 431–440 (1976).

    Article  CAS  PubMed  Google Scholar 

  35. Abdel-Monem, M., Dürwald, H. & Hoffmann-Berling, H. Eur. J. Biochem. 65, 441–449 (1976).

    Article  CAS  PubMed  Google Scholar 

  36. Kuhn, B., Abdel-Monem, M., Krell, H. & Hoffmann-Berling, H. J. biol. Chem. 254, 11343–11350 (1979).

    CAS  PubMed  Google Scholar 

  37. Yarranton, G. T., Das, R. H. & Gefter, M. L. J. biol. Chem. 254, 11997–12001 (1979).

    CAS  PubMed  Google Scholar 

  38. Yarranton, G. T., Das, R. H. & Gefter, M. K. J. biol. Chem. 254, 12002–12006 (1979).

    CAS  PubMed  Google Scholar 

  39. Scott, J. F., Eisenberg, S., Bertsch, L. L. & Kornberg, A. Proc. natn. Acad. Sci. U.S.A. 74, 193–197 (1977).

    Article  ADS  CAS  Google Scholar 

  40. Abdel-Monem, M., Chanal, M.-C. & Hoffmann-Berling, H. Eur. J. Biochem. 79, 33–38 (1977).

    Article  CAS  PubMed  Google Scholar 

  41. Abdel-Monem, M., Dürwald, H. & Hoffmann-Berling, H. Eur. J. Biochem. 79, 39–45 (1977).

    Article  CAS  PubMed  Google Scholar 

  42. Yarranton, G. T. & Gefter, M. L. Proc. natn. Acad. Sci. U.S.A. 76, 1658–1662 (1979).

    Article  ADS  CAS  Google Scholar 

  43. Eichler, D. C. & Lehman, I. R. J. biol. Chem. 252, 499–503 (1977).

    CAS  PubMed  Google Scholar 

  44. MacKay, V. & Linn, S. J. biol. Chem. 251, 3716–3719 (1976).

    CAS  PubMed  Google Scholar 

  45. Taylor, A. & Smith, G. R. Cell 22, 447–457 (1980).

    Article  CAS  PubMed  Google Scholar 

  46. Wilcox, K. W. & Smith, H. O. J. biol. Chem. 251, 6127–6134 (1976).

    CAS  PubMed  Google Scholar 

  47. West, S. C., Cassuto, E. & Howard-Flanders, P. Nature 290, 29–33 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Kmiec, E. & Holloman, W. K. Cell (in the press).

  49. Wang, J. C. J. molec. Biol. 43, 25–39 (1969).

    Article  CAS  PubMed  Google Scholar 

  50. Germond, J. E., Hirt, B., Oudet, P., Gross-Bellard, M. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 72, 1843–1847 (1975).

    Article  ADS  CAS  Google Scholar 

  51. Wang, J. C., Jacobsen, J. H. & Saucier, J.-M. Nucleic Acids Res. 4, 1225–1241 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Durnford, J. M. & Champoux, J. J. J. biol. Chem. 253, 1086–1089 (1978).

    CAS  PubMed  Google Scholar 

  53. Sharp, P. A., Sugden, B. & Sambrook, J. Biochemistry 12, 3055–3063 (1973).

    Article  CAS  PubMed  Google Scholar 

  54. Watabe, H., Shibata, T. & Ando, T. J. Biochem., Tokyo 90, 1623–1632 (1981).

    Article  CAS  Google Scholar 

  55. Shibata, T., Ohtani, T., Iwabuchi, M. & Ando, T. J. biol. Chem. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtani, T., Shibata, T., Iwabuchi, Ma. et al. ATP-dependent unwinding of double helix in closed circular DNA by RecA protein of E. coli. Nature 299, 86–89 (1982). https://doi.org/10.1038/299086a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299086a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing