Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleotide sequence of the rat skeletal muscle actin gene

Abstract

The actins constitute a family of highly conserved proteins found in all eukaryotic cells. Their conservation through a very wide range of taxonomic groups and the existence of tissue-specific isoforms make the actin genes very interesting for the study of the evolution of genes and their controlling elements. On the basis of amino acid sequence data, at least six different mammalian actins have been identified (skeletal muscle, cardiac muscle, two smooth muscle actins and the cytoplasmic β- and γ-actins)1–5. Rat spleen DNA digested by the EcoRI restriction enzyme contains at least 12 different fragments with actin-like sequences but only one which hybridized, in very stringent conditions, with the skeletal muscle cloned cDNA probe6. Here we describe the sequence of the actin gene in that fragment. The nucleotide sequence codes for two amino acids, Met-Cys, preceding the known N-terminal Asp of the mature protein. There are five small introns in the coding region and a large intron in the 5′-untranslated region. Comparison of the structure of the rat skeletal muscle actin gene with the available data on actin genes from other organisms shows that while the sequenced actin genes from Drosophila and yeast have introns at different locations, introns located at codons specifying amino acids 41, 121, 204 and 267 have been preserved at least from the echinoderm to the vertebrates. A similar analysis has been done by Davidson7. An intron at codon 150 is common to a plant actin gene and the skeletal muscle acting gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Storti, R. V. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 73, 2346–2350 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Whalen, R. G., Butler-Browne, G. S. & Gros, F. Proc. natn. Acad. Sci. U.S.A. 73, 2018–2022 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Garrels, J. & Gibson, W. Cell 9, 793–805 (1976).

    Article  CAS  Google Scholar 

  4. Elzinga, M. & Lu, R. in Contractile Systems in Nonmuscle Tissues (eds Perry, S. V., Margreth, A. & Adelstein, R.) 29 (North-Holland, Amsterdam, 1976).

    Google Scholar 

  5. Vanderkerchkove, J. & Weber, K. Differentiation 14, 124–133 (1979).

    Google Scholar 

  6. Nudel, U. et al. Proc. natn. Acad. Sci. U.S.A. 79, 2763–2767 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Davidson, E. H. in Genome Evolution (eds Dover, G. A. & Flavell, R. B.) (Academic, New York, 1982).

    Google Scholar 

  8. Fyrberg, E. A., Bond, B. J., Hershel, N. D., Mixter, K. S. & Davidson, N. Cell 24, 107–116 (1981).

    Article  CAS  Google Scholar 

  9. Katcoff, D. et al. Proc. natn. Acad. Sci. U.S.A. 77, 960–964 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Shani, M. et al. Nucleic Acids Res. 9, 579–989 (1981).

    Article  CAS  Google Scholar 

  11. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  12. Weaver, R. F. & Weissmann, C. Nucleic Acids Res. 6, 1175–1193 (1979).

    Article  Google Scholar 

  13. Goldberg, M. thesis, Stanford Univ. (1979).

  14. Ziff, E. B. & Evans, R. M. Cell 15, 1463–1475 (1978).

    Article  CAS  Google Scholar 

  15. Yaffe, D. et al. in Stability and Switching in Cell Differentiation (eds Clayton, R. N. & Truman, D. E. S.) (Plenum, New York, in the press).

  16. Gilbert, W. R. Nature 271, 501 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Shah, D. M., Hightower, R. C. & Mengher, R. B. Proc. natn. Acad. Sci. U.S.A. 72, 1022–1026 (1982).

    Article  ADS  Google Scholar 

  18. Firtel, R. A., Timm, R., Kimmel, A. R. & McKeown, M. Proc. natn. Acad. Sci. U.S.A. 76, 6206–6210 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Gallwitz, D. & Sures, I. Proc. natn. Acad. Sci. U.S.A. 77, 2546–2550 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Ng, R. & Abelson, J. Proc. natn. Acad. Sci. U.S.A. 77, 3912–3916 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Maxam, A. M. & Gilbert, W. R. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5468 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakut, R., Shani, M., Givol, D. et al. Nucleotide sequence of the rat skeletal muscle actin gene. Nature 298, 857–859 (1982). https://doi.org/10.1038/298857a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298857a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing