Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lithospheric thinning associated with rifting in East Africa

Abstract

A fundamental mechanism of some continental rifting processes appears to be the transmission of thermal energy into the lithosphere by asthenospheric upwelling (the ‘active’ mechanism of Sengör and Burke1), for which the East African rift system is a classic example. The abundance and variety of magma types of predominantly alkaline affinities in the East Rift which derive from the thermal perturbation suggest that studies of igneous petrogenesis may offer a method of investigating the physical as well as the chemical conditions of the upwelling. Systematic variations in the temporal–spatial–compositional relations of igneous rocks associated with rifts are becoming well documented for several different rifts2–13, and it is generally observed that the degree of silica-saturation of lavas within these rifts increases with time, while incompatible element contents decrease. Furthermore, at any given instant, lavas erupted within the rifts are less silica-undersaturated than lavas erupted outside the rift. These observations are consistent with decreasing depths of origin of magmas with time as would be predicted for magmagenesis associated with an upwelling source region. Here, by deducing the physical conditions of origin of various magmatic products associated with a thermotectonic event in East Africa, the rate of upwelling is calculated and compared with the results of a simple thermal model of lithospheric thinning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sengör, A. M. C. & Burke, K. Geophys. Res. Lett. 5, 419–421 (1978).

    Article  ADS  Google Scholar 

  2. Gass, I. G. Phil. Trans. R. Soc. A267, 369–381 (1970).

    Article  ADS  Google Scholar 

  3. Mohr, P. A. Bull. Volcanol. 34, 141–157 (1970).

    Article  ADS  CAS  Google Scholar 

  4. Baker, B. H. et al. Tectonophysics 11, 191–215 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Baker, B. H. et al. Geol. Soc. Am. Spec. Pap. 136, (1972).

  6. King, B. C. & Chapman, G. R. Phil. Trans. R. Soc. A271, 185–208 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Williams, L. A. J. Tectonophysics 15, 83–96 (1972).

    Article  ADS  Google Scholar 

  8. Lippard, S. J. & Truckle, P. H. in Petrology and Geochemistry of Continental Rifts (eds Neumann, E.-R. & Ramberg, I. B. ) 123–131 (Reidel, Dordrecht, 1978).

    Book  Google Scholar 

  9. Norry, M. J. et al. Phil. Trans. R. Soc. A297, 259–271 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Lipman, P. W. Bull. geol. Soc. Am. 80, 1343–1354 (1969).

    Article  CAS  Google Scholar 

  11. Dungen, M. A. et al. in Pap. Conf. on the Processes of Planetary Rifting, 137–140 (Lunar and Planetary Institute, Houston, 1981).

  12. Duncan, R. A. et al. Nature 239, 82–86 (1972).

    Article  ADS  Google Scholar 

  13. Brooks, C. K. & Rucklidge, J. C. Lithos 7, 239–248 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Davis, G. L. Yb. Carnegie Instn Wash. 77, 895–897 (1978).

    Google Scholar 

  15. Eggler, D. H. & Wendlandt, R. F. in Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry (eds Boyd, F. R. & Meyer, H. O. A.) 330–338 (American Geophysical Union, Washington DC, 1979).

    Book  Google Scholar 

  16. Wendlandt, R. F. & Eggler, D. H. Am. J. Sci. 280, 421–458 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Wyllie, P. J. J. geophys. Res. 85, 6902–6910 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Kennedy, C. S. & Kennedy, G. C. J. geopnys. Res. 81, 2467–2470 (1976).

    Article  ADS  CAS  Google Scholar 

  19. King, B. C. et al. J. geol. Soc. 128, 173–205 (1972).

    Article  ADS  Google Scholar 

  20. Wyllie, P. J. & Huang, W. L. Nature 257, 297–299 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Wyllie, P. J. & Huang, W. L. Geology 3, 621–624 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Wyllie, P. J. & Huang, W. L. Contr. Miner. Petrol. 54, 79–107 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Eggler, D. H. Yb. Carnegie Instn. Wash. 74, 468–474 (1975).

    Google Scholar 

  24. Eggler, D. H. Geology 4, 69–72 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Eggler, D. H. Am. J. Sci. 278, 305–343 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Wendlandt, R. F. & Mysen, B. O. Am. Miner. 65, 37–44 (1980).

    CAS  Google Scholar 

  27. Wendlandt, R. F. & Eggler, D. H. Am. J. Sci. 280, 385–420 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Green, D. H. Phys. Earth planet. Inter. 3, 221–235 (1970).

    Article  ADS  CAS  Google Scholar 

  29. Thompson, R. N. Contr. Miner. Petrol. 45, 317–341 (1974).

    Article  ADS  CAS  Google Scholar 

  30. Jaques, A. L. & Green, D. H. Contr. Miner. Petrol. 73, 287–310 (1980).

    Article  ADS  CAS  Google Scholar 

  31. King, B. C. & Chapman, G. R. Phil. Trans. R. Soc. A271, 185–208 (1972).

    Article  ADS  CAS  Google Scholar 

  32. Kushiro, I. J. geophys. Res. 73, 619–634 (1968).

    Article  ADS  CAS  Google Scholar 

  33. Irving, A. J. & Price, R. C. Geochim. cosmochim. Acta 45, 1309–1320 (1981).

    Article  ADS  CAS  Google Scholar 

  34. Lippard, S. J. Lithos 6, 217–234 (1973).

    Article  ADS  CAS  Google Scholar 

  35. Pike, J. E. N. et al. J. Geol. 88, 343–352 (1980).

    Article  ADS  CAS  Google Scholar 

  36. Carslaw, H. S. & Jaeger, J. C. Heat Conduction in Solids, 266–267 (Oxford University Press, London, 1959).

    Google Scholar 

  37. Sclater, J. G. et al. Rev. Geophys. Space Phys. 18, 269–311 (1980).

    Article  ADS  Google Scholar 

  38. Wendlandt, R. F. in Pap. Conf. on the Processes of Planetary Rifting, 126–133 (Lunar and Planetary Institute, Houston, 1981).

  39. Detrick, R. S. & Crough, S. T. J. geophys. Res. 83, 1236–1244 (1978).

    Article  ADS  Google Scholar 

  40. Morgan, P. & Wheildon, J. J. geophys. Res. (submitted).

  41. Crough, S. T. & Thompson, G. A. J. geophys. Res. 81, 4857–4862 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendlandt, R., Morgan, P. Lithospheric thinning associated with rifting in East Africa. Nature 298, 734–736 (1982). https://doi.org/10.1038/298734a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298734a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing