Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correlations between heterozygosity and evolutionary rate of proteins

Abstract

Amino acid sequence analysis and electrophoretic analysis of protein variation have been widely used for measuring genetic differentiation between diverging lines of descent. The problem of identifying the causes of protein evolution and divergence is, however, largely unsolved. Using data extracted from a collection of allozyme surveys of vertebrate species, we report here that protein heterozygosity is correlated with both protein genetic distance and protein amino acid substitution rate. Proteins with high heterozygosity are shown to have evolved at a faster rate than proteins with low heterozygosity. Evolutionary rate estimates obtained from the two techniques of amino acid sequencing and electrophoretic analysis are highly correlated over those proteins assayed by both methods. The observed relationship between protein heterozygosity and genetic distance cannot be completely accounted for by neutral theory, but suggests that a substantial proportion of genetic distance accumulated between species is the result of selective substitution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sokal, R. R. in Ecological Genetics: The Interface (ed. Brussard, P. F.) (Springer, New York, 1978).

    Google Scholar 

  2. Riska, B. Evolution 33, 1001–1004 (1979).

    Article  Google Scholar 

  3. Johnson, M. S. & Mickevich, M. F. Evolution 31, 642–648 (1977).

    Article  CAS  Google Scholar 

  4. Pierce, B. A. & Mitton, J. B. Syst. Zool. 28, 63–70 (1979).

    Article  Google Scholar 

  5. Skibinski, D. O. F. & Ward, R. D. Genet. Res. 38, 71–92 (1981).

    Article  Google Scholar 

  6. Selander, R. K. in Molecular Evolution (ed. Ayala, F. J.) (Sinauer Associates, Sunderland, 1976).

    Google Scholar 

  7. Fuerst, P. A., Chakraborty, R. & Nei, M. Genetics 86, 455–483 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chakraborty, R., Fuerst, P. A. & Nei, M. Genetics 88, 367–390 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ward, R. D. Biochem. Genet. 16, 799–810 (1978).

    Article  CAS  Google Scholar 

  10. Nei, M. Am. Nat. 106, 283–292 (1972).

    Article  Google Scholar 

  11. Sarich, V. M. Nature 265, 24–28 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Wilson, A. c., Carlson, S. S. & White, T. J. A. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  Google Scholar 

  13. Sonderegger, P. & Christen, P. Nature 275, 157–159 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Kimura, M. & Crow, J. F. Genetics 49, 725–738 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chakraborty, R. & Nei, M. Evolution 31, 347–356 (1977).

    Article  Google Scholar 

  16. Ohta, T. & Kimura, M. Genet. Res. 22, 201–204 (1973).

    Article  MathSciNet  CAS  Google Scholar 

  17. Maruyama, T. J. molec. Evol. 1, 368–370 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Nei, M. Molecular Population Genetics and Evolution (North-Holland, New York, 1975).

    Google Scholar 

  19. Nei, M. Am. Nat. 105, 385–398 (1971).

    Article  CAS  Google Scholar 

  20. Kimura, M. Proc. natn. Acad. Sci. U.S.A. 76, 3440–3444 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skibinski, D., Ward, R. Correlations between heterozygosity and evolutionary rate of proteins. Nature 298, 490–492 (1982). https://doi.org/10.1038/298490a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298490a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing