Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Curare can open and block ionic channels associated with cholinergic receptors

A Corrigendum to this article was published on 01 September 1982

Abstract

Curare has long been regarded as a typical competitive antagonist of acetylcholine (ACh) at the vertebrate neuromuscular junction. Recently, however, it has been shown that curare can also block the channels opened by ACh at the frog neuromuscular junction as well as on rat and Aplysia neurons1–4; moreover, curare is able to depolarize rat myotubes and thus behaves as an agonist for the cholinergic receptor of this preparation5 (see ref. 6). Using the single channel recording technique7,8, we have now found that, on rat myotubes, curare can both open and block in the same cell the channels controlled by the cholinergic receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Manalis, R. Nature 267, 366–368 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Katz, B. & Miledi, R. Proc. R. Soc. B203, 119–133 (1978).

    ADS  CAS  Google Scholar 

  3. Colquhoun, D., Dreyer, F. & Sheridan, R. J. J. Physiol., Lond. 293, 247–284 (1979).

    Article  CAS  Google Scholar 

  4. Marty, A., Neild, T. O. & Ascher, P. Nature 261, 501–503 (1976); J. Physiol., Lond. 278, 207–235 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Ziskind, L. & Dennis, M. Nature 276, 622–623 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Morris, C., Jackson, M., Lecar, H. & Wong, S. Biophys. J. 37, 19a (1982).

    Article  Google Scholar 

  7. Neher, E. & Sakmann, B. Nature 260, 799–802 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  9. Hamill, O. & Sakmann, B. Nature 294, 462–464 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Colquhoun, D. & Sakmann, B. Nature 294, 464–466 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Sakmann, B., Patlak, J. & Neher, E. Nature 286, 71–73 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Colquhoun, D. & Hawkes, A. Proc. R. Soc. B199, 231–262 (1977).

    ADS  CAS  Google Scholar 

  13. Ascher, P., Large, W. & Rang, H. J. Physiol., Lond. 295, 139–170 (1979).

    Article  CAS  Google Scholar 

  14. Adams, P. R. J. Physiol., Lond. 260, 531–552 (1976).

    Article  CAS  Google Scholar 

  15. Magleby, K. & Stevens, C. J. Physiol., Lond. 223, 173–197 (1972).

    Article  CAS  Google Scholar 

  16. Adams, P. R. J. Physiol., Lond. 268, 291–318 (1977).

    Article  CAS  Google Scholar 

  17. Neher, E. & Steinbach, J. H. J. Physiol., Lond. 277, 153–176 (1978).

    Article  CAS  Google Scholar 

  18. Fischbach, G. & Cohen, S. Devl Biol. 31, 147–162 (1973).

    Article  CAS  Google Scholar 

  19. Neubig, R. & Cohen, J. Biochemistry 24, 5464–5475 (1979).

    Article  Google Scholar 

  20. Adams, P. R. & Sakmann, B. Proc. natn. Acad. Sci. U.S.A. 75, 2994–2998 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Michler, A. & Sakmann, B. Devl Biol. 80, 1–17 (1980).

    Article  CAS  Google Scholar 

  22. Fischbach, G. & Schuetze, S. J. Physiol., Lond. 303, 125–137 (1980).

    Article  CAS  Google Scholar 

  23. Dennis, M., Ziskind-Conhaim, L. & Harris, A. Devl Biol. 81, 266–279 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trautmann, A. Curare can open and block ionic channels associated with cholinergic receptors. Nature 298, 272–275 (1982). https://doi.org/10.1038/298272a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298272a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing