Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Do protons block Na+ channels by binding to a site outside the pore?

Abstract

In a detailed structural model of the Na+ channel which has evolved over the past decade, the selectivity of the channel for cations1,2, the voltage-dependence of channel block by protons3 and other small cations2, and block by tetrodotoxin (TTX)4,5 all depend on the presence of a negatively charged site inside the channel that is part of a constriction called the ‘selectivity filter’. Much of the detail inherent in the model arises from Woodhull's quantitative desciption of the voltage dependence of Na+ channel block by protons3, in which the apparent relief of block observed at positive potentials occurs because the blocking site is located inside the sodium channel 25% of the way through the membrane voltage drop. I report here that proton block of skeletal muscle Na+ channels, determined from tail currents, is voltage-independent, and that the apparent voltage-dependent block of peak Na+ currents is instead an effect of low pH on channel kinetics. These results suggest that the proton binding site lies effectively outside the membrane field and thus at or outside the channel mouth. As a consequence, present models of the channel interior will need to be re-examined and substantially modified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hille, B. J. gen. Physiol. 58, 599–619 (1971); 59, 637–658 (1972).

    Article  CAS  Google Scholar 

  2. Hille, B. J. gen. Physiol. 66, 535–560 (1975).

    Article  CAS  Google Scholar 

  3. Woodhull, A. M. J. gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

  4. Henderson, R., Ritchie, J. M. & Strichartz, G. R. Proc. natn. Acad. Sci. U.S.A. 71, 3936–3940 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Hille, B. Biophys. J. 15, 615–619 (1975); Fedn Proc. 34, 1318–1321 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Ulbricht, W. & Wagner, H.-H. J. Physiol., Lond. 252, 159–184 (1975).

    Article  CAS  Google Scholar 

  7. Carbone, E., Testa, P. L. & Wanke, E. Biophys. J. 35, 393–419 (1981).

    Article  CAS  Google Scholar 

  8. Campbell, D. T. & Hille, B. J. gen. Physiol. 67, 309–323 (1976).

    Article  CAS  Google Scholar 

  9. Carbone, E., Fioravanti, R., Prestipino, G. & Wanke, E. J. Membrane Biol. 43, 295–315 (1978).

    Article  CAS  Google Scholar 

  10. Mozhayeva, G. N., Naumov, A. P. & Negulyaev Yu, A. Biochim. biophys. Acta 643, 251–255 (1981).

    Article  CAS  Google Scholar 

  11. Pooler, J. P. & Valenzeno, D. P. Biochim. biophys. Acta 555, 307–315 (1979).

    Article  CAS  Google Scholar 

  12. Adelman, W. J. & Palti, Y. J. gen. Physiol. 54, 589–606 (1969).

    Article  CAS  Google Scholar 

  13. Carbone, E. Testa, P. L. & Wanke, E. Biophys. J. 35, 393–413 (1981).

    Article  CAS  Google Scholar 

  14. Hille, B. J. gen. Physiol. 51, 221–236 (1968).

    Article  CAS  Google Scholar 

  15. Drouin, H. & Neumcke, B. Pflügers Arch ges. Physiol. 351, 207–229 (1974).

    Article  CAS  Google Scholar 

  16. Hille, B., Woodhull, A. M. & Shapiro, B. I. Phil. Trans. R. Soc. B270, 301–318 (1975).

    Article  CAS  Google Scholar 

  17. Goldman, D. E. J. gen. Physiol. 27, 37–60 (1943).

    Article  CAS  Google Scholar 

  18. Hodgkin, A. L. & Katz, B. J. Physiol., Lond. 108, 37–77 (1949).

    Article  CAS  Google Scholar 

  19. Spalding, B. C. J. Physiol., Lond. 305, 485–500 (1980).

    Article  CAS  Google Scholar 

  20. Mozhayeva, G. N., Naumov, A. P. & Negulyaev, Yu. A. Gen. Physiol. Biophys. 1, 5–19 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, D. Do protons block Na+ channels by binding to a site outside the pore?. Nature 298, 165–167 (1982). https://doi.org/10.1038/298165a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298165a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing