Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model for the molecular requirements of immunoglobulin heavy chain class switching

Abstract

Heavy chain immunoglobulin gene expression requires two independent DNA recombination systems1–3. The first DNA rearrangement event (V–D–J recombination) involves the formation of a complete variable region (VH) gene in pre-B lymphocytes3–6. The second series of recombination events allows for a switch in heavy chain constant region class from μ to either γ3, γ1, γ2b, γ2a, ɛ or α1–3. These recombination events occur in intervening sequences but do not alter or generate new coding information which is a common feature of V–D–J unions1–3. Tandemly repeated DNA sequences, spanning 2–5 kilobases (b), are localized 1.5 kilobase pairs 5′ of each CH gene and have been termed CH switch (S) regions.2,7. Two short, simple sequences that are shared by all switch region repeats (GAGCT and GGGGT) have been proposed to facilitate CH switching by homologous DNA recombination8. Unlike other switch regions, a large portion of the Sμ region (3 kb) consists of essentially pure tandem repeats of GAGCT which are occasionally interrupted by a GGGGT8. However, the precise sites of switch-recombination in Sμ are generally located considerably 5′ of this genetically unstable stretch9,10 of GAGCT repeats (Fig. 1). We now report the properties of a novel CH S region sequence, YAGGTTG, which is 5′ of switch recombination sites and preferentially repeated in S regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davis, M. M. et al. Nature 283, 733–739 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Kataoka, T., Kawakami, T., Takahashi, N. & Honjo, T. Proc. natn. Acad. Sci. U.S.A. 77, 919–923 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. & Tonegawa, S. Nature 286, 676–683 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Early, P., Huang, H., Davis, M., Calame, K. & Hood, L. Cell 19, 981–992 (1980).

    Article  CAS  Google Scholar 

  5. Matthyssens, G. & Rabbitts, T. H. Proc. natn. Acad. Sci. U.S.A. 77, 6561–6565 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Siebenlist, U., Ravetch, J. U., Korsmeyer, S., Waldmann, T. & Leder, P. Nature 294, 631–635 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Davis, M. M., Kim, S. K. & Hood, L. Science 209, 1360–1365 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Nikaido, T., Nakai, S. & Honjo, T. Nature 292, 845–848 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Marcu, K. B., Banerji, J., Penncavage, N. A., Lang, R. & Arnheim, N. Cell 22, 187–196 (1980a).

    Article  CAS  Google Scholar 

  10. Marcu, K. B. et al. Cold Spring Harb. Symp. quant. Biol. 45, 899–911 (1980).

    Article  Google Scholar 

  11. Kataoka, T., Miyata, T. & Honjo, T. Cell 23, 357–368 (1981).

    Article  CAS  Google Scholar 

  12. Hood, L. et al. Cold Spring Harb. Symp. quant. Biol. 45, 887–898 (1980).

    Article  Google Scholar 

  13. Dunnick, W., Rabbitts, T. H. & Milstein, C. Nature 286, 669–675 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Takahashi, N., Kataoka, T. & Honjo, T. Gene 11, 117–127 (1980).

    Article  CAS  Google Scholar 

  15. Konkel, D. A., Maizel, J. V. & Leder, P. Cell 18, 865–873 (1979).

    Article  CAS  Google Scholar 

  16. Nishioka, Y. & Leder, P. Cell 18, 875–882 (1979).

    Article  CAS  Google Scholar 

  17. Sakano, H., Huppi, K., Heinrich, G. & Tonegawa, S. Nature 280, 288–294 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Leder, P. et al. Cold Spring Harb. Symp. quant. Biol. 45, 859–865 (1980).

    Article  Google Scholar 

  19. Morrison, S. L. in Cells of Immunoglobulin Synthesis (eds Pernis, B. & Vogel, H. J.) 113–126 (Academic, New York, 1979).

    Book  Google Scholar 

  20. Franklin, E. C., Frangione, B. & Buxbaum, J. in Cells of Immunoglobulin Synthesis (eds Pernis, B. & Vogel, H. J.) 89–95 (Academic, New York, 1979).

    Book  Google Scholar 

  21. Takahashi, N., Nikai, S. & Honjo, T. Nucleic Acids. Res. 8, 5983–5991 (1980).

    Article  CAS  Google Scholar 

  22. Ravetch, J. V., Kirsch, I. R. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 77, 6734–6738 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Rabbitts, T. H., Forster, A. and Milstein, C. P. Nucleic Acids Res. 9, 4509–4524 (1981).

    Article  CAS  Google Scholar 

  24. Seidman, J. G. & Leder, P. Nature 286, 779–783 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Kenter, A. L., Eckhardt, L. A., Tilley, S. A., Birshtein, B. K. in Immunoglobulin Idiotypes and Their Expression, ICN-UCLA Symp. molec. cell. Biol. (eds Janeway, C., Sercarz, E. E., Wigzell, H. & Fox, C. F.) (Academic, New York, in the press).

  26. Eckhardt, L. A., Tilley, S. A., Lang, R. B., Marcu, K. B. & Birshtein, B. K. Proc. natn. Acad. Sci. U.S.A. 79, 3006–3010 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Stanton, L. W. & Marcu, K. B. Nucleic Acids Res. (submitted).

  28. Kawakami, T., Takahashi, N. & Honjo, T. Nucleic Acids. Res. 8, 3933–3945 (1980).

    Article  CAS  Google Scholar 

  29. Honjo, T. et al. Cell 18, 559–568 (1979).

    Article  CAS  Google Scholar 

  30. Tucker, P. W., Marcu, K. B., Newell, N., Richards, J. & Blattner, F. R. Science 206, 1301–1306 (1979).

    ADS  Google Scholar 

  31. Yamawaki-Kataoka, Y., Kataoka, T., Takahashi, N., Obata, M. & Honjo, T. Nature 283, 786–789 (1980).

    Article  ADS  CAS  Google Scholar 

  32. Ollo, R., Auffray, C., Morchamps, C. & Rougeon, F. Proc. natn. Acad. Sci. U.S.A. 78, 2442–2446 (1981).

    Article  ADS  CAS  Google Scholar 

  33. Tucker, P. W., Slightom, J. L. & Blattner, F. R. Proc. natn. Acad. Sci. U.S.A. 78, 7684–7688 (1981).

    Article  ADS  CAS  Google Scholar 

  34. Kim, S., Davis, M. M., Sinn, E., Patten, P. & Hood, L. Cell 27, 573–581 (1981).

    Article  CAS  Google Scholar 

  35. Obata, M. et al. Proc. natn. Acad. Sci. U.S.A. 78, 2437–2441 (1981).

    Article  ADS  CAS  Google Scholar 

  36. Lang, R. B., Stanton, L. W. & Marcu, K. B. Nucleic Acids Res. 10, 611–630 (1982).

    Article  CAS  Google Scholar 

  37. Kirsch, I. R. et al. Nature 293, 585–587 (1981).

    Article  ADS  CAS  Google Scholar 

  38. Harris, L. J., Lang, R. B. & Marcu, K. B. Proc. natn. Acad. Sci. U.S.A. 79 (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcu, K., Lang, R., Stanton, L. et al. A model for the molecular requirements of immunoglobulin heavy chain class switching. Nature 298, 87–89 (1982). https://doi.org/10.1038/298087a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298087a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing