Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hotspots, polar wander, Mesozoic convection and the geoid

Abstract

The geoid bears little relation to present tectonic features of the Earth other than trenches and hotspots. The Mesozoic supercontinent of Pangea, however, apparently occupied a central position in the Atlantic–African geoid high. This and the equatorial Pacific geoid high contain most of the world's hotspots1,2. The plateaus and rises which are now in the western Pacific formed in the Pacific geoid high and this may have been the early Mesozoic–late Palaeozoic position of a large part of Asia and other fragments of the Pacific rim continents. The major global geoid highs were regions of extensive Cretaceous volcanism and may be the former sites of continental aggregations and mantle insulation and, therefore, hotter-than-normal mantle. The pent-up heat causes rifts and hotspots and results in uplift, magmatism, fragmentation and dispersal of the continents and the subsequent formation of plateaus, aseismic ridges and seamount chains which cause a global rise in sea-level. Convection in the upper mantle caused by such lateral temperature gradients is intrinsically episodic. A geoid anomaly of 50 m can be formed in about 100 Myr by continental insulation. We show here that such geoid anomalies are long-lived and may be used to remove the ambiguity in early Mesozoic–late Palaeozoic plate reconstructions. Geoid highs control the rotation axis of the Earth and, in effect, bring long-lived continental aggregations to the Equator. Many aspects of continental geology such as vertical-tectonics and episodicity of magmatism and transgressions can be explained by continental insulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chase, C. Nature 282, 464–468 (1979).

    Article  ADS  Google Scholar 

  2. Crough, S. & Jurdy, D. Earth planet. Sci. Lett. 48, 15–22 (1980).

    Article  ADS  Google Scholar 

  3. Morgan, W. J. in The Sea Vol. 7 (ed. Emiliani, C.) 443–488 (Wiley-Interscience, New York 1981).

    Google Scholar 

  4. Cochran, U. & Talwani, M. Geophys. J. 50, 495–552 (1977).

    Article  ADS  Google Scholar 

  5. Menard, H. & Dorman, L. J. geophys. Res. 82, 5329–5335 (1977).

    Article  ADS  Google Scholar 

  6. Kanasewich, E. R., Havskov, J. & Evans, M. Can. J. Earth Sci. 15, 919–955 (1978).

    Article  ADS  Google Scholar 

  7. Pollack, H. & Chapman, D. S. Tectonophysics 38, 279–296 (1977).

    Article  ADS  Google Scholar 

  8. Watts, A. B., Bodine, V. & Ribe, N. Nature 283, 532–537 (1980).

    Article  ADS  Google Scholar 

  9. Schlanger, S. O., Jenkyns, H. C. & Premoli-Silva, I. Earth planet. Sci. Lett. 52, 435–449 (1981).

    Article  ADS  Google Scholar 

  10. Vail, P., Mitchum, R. M. Jr & Thompson, S. III Am. Ass. petrol. Geol. Mem. 26, 83–97 (1978).

    Google Scholar 

  11. McElhinny, M., Embleton, B. J. J., Ma, X. H. & Zhang, Z. K. Nature 293, 212–216 (1981).

    Article  ADS  Google Scholar 

  12. Panuska, B. & Stone, D. Nature 293, 561–563 (1981).

    Article  ADS  Google Scholar 

  13. Hattori, I. & Hirooka, K. Tectonophysics 57, 211–235 (1979).

    Article  ADS  Google Scholar 

  14. Hammond, S., Kroenke, L., Thayer, F. & Keelong, D. Nature 255, 46–47 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Larson, R. & Chase, C. Bull. geol. Soc. Am. 83, 3627–3644 (1972).

    Article  Google Scholar 

  16. Batiza, R., Larson, R., Schlanger, S., Scheka, S. & Tokuyama, H. Nature 286, 476–478 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Burke, K., Fox, D. & Senqor, A. M. J. geophys. Res. 83, 3949–3954 (1978).

    Article  ADS  Google Scholar 

  18. Smith, A. G., Hurley, A. M. & Briden, J. C. Phanerozoic Paleocontinental World Maps (Cambridge University Press, 1981).

    Google Scholar 

  19. Boucot, A. J. & Gray, J. in Historical Biogeography, Plate Tectonics, and the Changing Environment (eds Gray, J. & Boucot, A. J.) 465–482 (Oregon State University Press, 1979).

    Google Scholar 

  20. Goldreich, P. & Toomre, A. J. geophys. Res. 74, 2555–2567 (1969).

    Article  ADS  Google Scholar 

  21. Menard, H. W. Earth Planet. Sci. Lett 20, 237–241 (1973).

    Article  ADS  Google Scholar 

  22. Dahlen, F. A. (in preparation).

  23. Hager, B. H. (in preparation).

  24. Sclater, J. G., Parsons, B. & Jaupart, C. J. geophys. Res. 86, 11,535–11,552 (1981).

    Article  ADS  Google Scholar 

  25. Elder, J. Nature 214, 657–660 (1967).

    Article  ADS  Google Scholar 

  26. Ichiye, T. J. geophys. Res. 76, 1139–1153 (1971).

    Article  ADS  Google Scholar 

  27. Busse, F. J. Geophys. J. R. astr. Soc. 52, 1–12 (1978).

    Article  ADS  Google Scholar 

  28. Froidevaux, C. & Nataf, H. Sonderdruck aus der Geologischen Rundschau Band 70, 166–176 (1981).

    Article  ADS  Google Scholar 

  29. Gordon, R. G., McWilliams, M. O. & Cox, A. J. geophys. Res. 84, 5480–5486 (1979).

    Article  ADS  Google Scholar 

  30. Van Alstein, D. R. thesis, California Inst. Technol. (1979).

  31. Gordon, R. & Cape, C. Earth planet. Sci. Lett. 55, 37–47 (1981).

    Article  ADS  Google Scholar 

  32. Jurdy, D. J. geophys. Res. 83, 4989–4994 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D. Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297, 391–393 (1982). https://doi.org/10.1038/297391a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297391a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing