Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structure of a pseudo intercalated complex between actinomycin and the DNA binding sequence d(GpC)

Abstract

Actinomycin D (AMD) is used clinically to treat tumours such as Wilms' tumour1 and gestational choriocarcinoma2. It inhibits transcription in most cellular systems3,4, and binds to DNA, not to RNA3–5, with a preference for guanine6. The study of the crystal structure of a 2:1 complex between deoxyguanosine and AMD demonstrated both stacking and hydrogen-bonding interactions between the drug and the guanine ring7. Solution studies8,9 have indicated that the drug binds preferentially to guanine–pyrimidine sequences, such as d(GpC), and that an intercalated complex forms with both DNA10 and DNA fragments11. External binding12 and intercalation10,13 models for the structure of the complex between AMD and DNA have been proposed, but until now no crystal strucutre of a complex between AMD and an oligonucleotide has been reported. As the smallest unit of DNA with the potential for forming an intercalated duplex is a self-complementary deoxydinucleoside monophosphate, we undertook the crystallographic analysis of the 2:1 complex between deoxyguanylyl-3′, 5′-deoxycytidine, d(GpC), and AMD. The complex is found to form an unusual pseudo-intercalated structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farber, S. J. Am. med. Ass. 198, 826–836 (1966).

    Article  CAS  Google Scholar 

  2. Lewis, J. L. Cancer 30, 1517–1521 (1972).

    Article  Google Scholar 

  3. Goldberg, I. H. & Friedman, P. A. A. Rev. Biochem. 40, 775–810 (1971).

    Article  CAS  Google Scholar 

  4. Kersten, H. & Kersten, W. in Inhibitors, of Nucleic Acid Synthesis, 40–66 (Springer, Berlin, 1974).

    Google Scholar 

  5. Bunte, T., Novak, U., Friedrich, R. & Moelling, K. Biochim. biophys. Acta 610, 241–247 (1980).

    Article  CAS  Google Scholar 

  6. Goldberg, I. H., Rabinowitz, M. & Reich, E. Proc. natn. Acad. Sci. U.S.A. 48, 2094–2101 (1962).

    Article  ADS  CAS  Google Scholar 

  7. Sobell, H. M., Jain, S. C., Sakore, T. D. & Nordman, C. E. Nature new Biol. 231, 200–205 (1971).

    Article  CAS  Google Scholar 

  8. Krugh, T. R. in Topics in Nucleic Acid Structure (ed. Neidle, S.) 197–217 (Macmillan, London, 1981).

    Book  Google Scholar 

  9. Krugh, T. R. & Chen, Y. C. Biochemistry 14, 4912–4922 (1975).

    Article  CAS  Google Scholar 

  10. Müller, W. & Crothers, D. M. J. molec. Biol. 35, 251–290 (1968).

    Article  Google Scholar 

  11. Patel, D. J. Biochemistry 13, 2396–2402 (1974).

    Article  CAS  Google Scholar 

  12. Hamilton, L. D., Fuller, W. & Reich, E. Nature 198, 538–540 (1963).

    Article  ADS  CAS  Google Scholar 

  13. Sobell, H. M. & Jain, S. C. J. molec. Biol. 68, 21–34 (1972).

    Article  CAS  Google Scholar 

  14. North, A. C. T., Phillips, D. C. & Mathews, F. S. Acta crystallogr. A24, 351–359 (1968).

    Article  Google Scholar 

  15. Wood, W. “DOCK” Interactive Three Dimensional Display and Manipulation of Molecular and Contour Data (ICR Internal Documentation, Philadelphia, 1981).

    Google Scholar 

  16. Rosenberg, J. M., Seeman, N. C., Day, R. O. & Rich, A. J. molec. Biol. 104, 145–167 (1976).

    Article  CAS  Google Scholar 

  17. Seeman, N. C., Rosenberg, J. M., Suddath, F. L., Kim, J. J. P. & Rich, A. J. molec. Biol. 104, 109–144 (1976).

    Article  CAS  Google Scholar 

  18. Tsai, C.-C., Jain, S. C. & Sobell, H. M. J. molec. Biol. 114, 301–315 (1977).

    Article  CAS  Google Scholar 

  19. Neidle, S. et al. Nature 269, 304–307 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Wang, A. H. J., Nathans, J., van der Marel, G., van Boom, J. H. & Rich, A. Nature 276, 471–474 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Berman, H. M. & Young, P. R. A. Rev. Biophys. Bioengng 10, 87–114 (1981).

    Article  CAS  Google Scholar 

  22. Seeman, N. C., Day, R. O. & Rich, A. Nature 253, 324–326 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Reinhardt, C. G. & Krugh, T. R. Biochemistry 16, 2890–2895 (1977).

    Article  CAS  Google Scholar 

  24. Patel, D. J. Biochim. biophys. Acta 442, 98–108 (1976).

    Article  CAS  Google Scholar 

  25. Patel, D. J. Biopolymers 15, 533–558 (1976).

    Article  CAS  Google Scholar 

  26. Quigley, G. J. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7204–7208 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Broyde, S. & Hingerty, B. Biopolymers 18, 2905–2910 (1979).

    Article  CAS  Google Scholar 

  28. Wells, R. D. & Larson, J. E. J. molec. Biol. 49, 319–342 (1970).

    Article  CAS  Google Scholar 

  29. Sengupta, S. K. et al. J. med. Chem. 24, 1052–1059 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takusagawa, F., Dabrow, M., Neidle, S. et al. The structure of a pseudo intercalated complex between actinomycin and the DNA binding sequence d(GpC). Nature 296, 466–469 (1982). https://doi.org/10.1038/296466a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296466a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing