Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Substrate and sequence specificity of a eukaryotic DNA methylase

Abstract

In eukaryotic DNA, 50–90% of the dinucleotide sequence C-G is methylated. Most methylated sites are apparently placed at fixed locations in the genome and this methylation pattern is faithfully inherited from generation to generation1. Holliday and Pugh2 and Riggs3 have suggested that methyl moieties are inherited in a semi-conservative fashion during DNA replication, and this model has been confirmed by experiments in which methylated DNA was integrated into mouse L-cells following DNA-mediated gene transfer4–6. For this mechanism to operate, two basic requirements must be satisfied: (1) methyl moieties must be symmetrically placed on both strands of the DNA7,8 and (2) the cellular methylase should be specific for the hemi-methylated substrate present during DNA replication. Here we demonstrate conclusively that the preferred substrate in vitro for the mouse ascites DNA methylase is indeed hemi-methylated DNA. Furthermore, this enzyme seems to methylate exclusively cytosine residues located at the dinucleotide C-G

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Razin, A. & Riggs, A. D. Science 210, 604–610 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Holliday, R. & Pugh, J. E. Science 187, 226–232 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Riggs, A. D. Cytogenet. Cell Genet. 14, 9–14 (1975).

    Article  CAS  Google Scholar 

  4. Pollack, Y., Stein, R., Razin, A. & Cedar, H. Proc. natn. Acad. Sci. U.S.A. 77, 6463–6467 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Stein, R., Gruenbaum, Y., Pollack, Y., Razin, A. & Cedar, H. Proc. natn. Acad. Sci. U.S.A. 79, 61–65 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Wigler, M., Levy, D. & Perucho, M. Cell 24, 33–40 (1981).

    Article  CAS  Google Scholar 

  7. Bird, A. P. J. molec. Biol. 118, 49–60 (1978).

    Article  CAS  Google Scholar 

  8. Cedar, H., Solage, A., Glaser, G. & Razin, A. Nucleic Acids Res. 6, 2125–2132 (1979).

    Article  CAS  Google Scholar 

  9. Adams, R. L. P., McKay, E. L., Craig, L. M. & Burdon, R. H. Biochem. biophys. Acta 561, 345–357 (1979).

    CAS  PubMed  Google Scholar 

  10. Setlow, P. CRC Handb. Biochem. molec. Biol. 2, 312–318 (1976).

    Google Scholar 

  11. Gruenbaum, Y., Stein, R., Cedar, H. & Razin, A. FEBS Lett. 142, 67–71 (1981).

    Article  Google Scholar 

  12. Gruenbaum, Y., Cedar, H. & Razin, A. Nucleic Acids Res. 9, 2509–2515 (1981).

    Article  CAS  Google Scholar 

  13. Gruenbaum, Y., Naveh-Many, T., Cedar, H. & Razin, A. Nature 292, 860–862 (1981).

    Article  ADS  CAS  Google Scholar 

  14. van der Ploeg, L. H. T. & Flavell, R. A. Cell 19, 947–958 (1980).

    Article  CAS  Google Scholar 

  15. van der Ploeg, L. H. T., Graften, J. & Flavell, R. A. Nucleic Acids Res. 8, 4563–4574 (1980).

    Article  CAS  Google Scholar 

  16. Sneider, T. W. Nucleic Acids Res. 8, 3829–3840 (1980).

    Article  CAS  Google Scholar 

  17. Sutler, D. & Doerfler, W. Proc. natn. Acad. Sci. U.S.A. 77, 253–256 (1980).

    Article  ADS  Google Scholar 

  18. Desrosiers, R. C., Mulder, C. & Fleckenstein, B. Proc. natn. Acad. Sci. U.S.A. 76, 3839–3843 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Waalwijk, C. & Flavell, R. A. Nucleic Acids Res. 5, 4631–4641 (1978).

    Article  CAS  Google Scholar 

  20. Mandel, J. L. & Chambon, P. Nucleic Acids Res. 7, 2081–2090 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruenbaum, Y., Cedar, H. & Razin, A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295, 620–622 (1982). https://doi.org/10.1038/295620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing