Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

tRNA precursor transcribed from a mutant human gene inserted into a SV40 vector is processed incorrectly

Abstract

We have identified 12 initiator methionine tRNA (tRNAiMet) genes in the haploid human genome1. One gene, cloned from a recombinant phage library of human fetal liver DNA, contained a base substitution at position 56 in the mature eukaryotic initiator tRNA sequence. The substitution, a G replaced by a T, should generate a tRNA species having a U at a sequence position not observed in any of 178 sequenced prokaryotic and eukaryotic tRNAs2. Recently, we have demonstrated3 that this variant tRNA gene is efficiently transcribed in an homologous in vitro system derived from KB cells. However, the precursor RNA species of the variant gene, unlike that of the normal one, is not fully processed to a mature sequence in these cell-free extracts. Although the three nucleotides of the 5′ leader sequence are efficiently trimmed, the 13-nucleotide 3′ trailer is not processed, resulting in the accumulation of an 87-nucleotide precursor. In this report we assay the functional properties of the human variant initiator tRNA gene within an intact cell by studying its transcription from a simian virus 40 (SV40) recombinant during lytic infection of African green monkey kidney (AGMK) cells. We demonstrate that the variant gene is efficiently transcribed when inserted in the SV40 chromosome but, as in vitro, the precursor tRNA is not processed to a mature tRNA species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Santos, T. & Zasloff, M. Cell 23, 699–709 (1981).

    Article  CAS  Google Scholar 

  2. Singhal, R. P. & Fallis, P. A. M. Prog. Nucleic Acid Res. molec. Biol. 23, 228–290 (1979).

    Google Scholar 

  3. Zasloff, M., Santos, T., Romeo, P. H. & Rosenberg, M. J. biol. Chem. (submitted).

  4. Hamer, D. H., Kaehler, M. & Leder, P. Cell 21, 697–708 (1980).

    Article  CAS  Google Scholar 

  5. Hamer, D. & Leder, P. Nature 281, 36–40 (1979).

    Article  ADS  Google Scholar 

  6. Gorin, M. B. & Tilghman, S. M. Proc. natn. Acad. Sci. U.S.A. 72, 1351–1355 (1980).

    Article  ADS  Google Scholar 

  7. Telford, J. et al. Proc. natn. Acad. Sci. U.S.A. 76, 2590–2594 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Brownlee, G. G. & Sanger, F. Eur. J. Biochem. 11, 395–415 (1969).

    Article  CAS  Google Scholar 

  9. Barrel, B. G. in Procedures in Nucleic Acid Research Vol. 2 (eds Cantoni, G. L. & Davies, D. R.) 751–799 (Harper and Row, New York, 1971).

    Google Scholar 

  10. Nishimura, S. Prog. Nucleic Acid Res. molec. Biol. 12, 49–85 (1972).

    Article  CAS  Google Scholar 

  11. Bogenhagen, D. F. & Brown, D. D. Cell 24, 261–270, (1981).

    Article  CAS  Google Scholar 

  12. DeRobertis, E. M. & Olson, M. V. Nature 278, 137–143, (1979).

    Article  ADS  CAS  Google Scholar 

  13. Ziff, E. B. Nature 287, 491–499 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Ferdinand, F., Brown, M. & Khoury, G. Virology 78, 150–161 (1977).

    Article  CAS  Google Scholar 

  15. Okado, J. Nucleic Acids Res. 3, 2593–2603 (1978).

    Article  Google Scholar 

  16. Hamer, D. H. in Genetic Engineering Vol. 2 (eds Setlow, J. & Hollaender, A.) 83–101 (Plenum, New York, 1980).

    Google Scholar 

  17. Zasloff, M. & Camerini-Otero, R. Proc. natn. Acad. Sci. U.S.A. 77, 1907–1911 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Dagert, H. & Ehrlich, S. D. Gene 6, 23–28 (1979).

    Article  CAS  Google Scholar 

  19. Grunstein, M. & Hogness, D. Proc. natn. Acad. Sci. U.S.A. 72, 3961–3965 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Zasloff, M., Ginder, G. & Felsenfeld, G. Nucleic Acids Res. 5, 1139–1151 (1978).

    Article  CAS  Google Scholar 

  21. Scherrer, K. in Fundamental Techniques in Virology (eds Habel, K. & Salzman, N. P.) 413–432 (Academic, New York, 1969).

    Google Scholar 

  22. Maxam, A. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zasloff, M., Santos, T. & Hamer, D. tRNA precursor transcribed from a mutant human gene inserted into a SV40 vector is processed incorrectly. Nature 295, 533–535 (1982). https://doi.org/10.1038/295533a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295533a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing