Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A hypothesis for the initiation of genetic recombination in eukaryotes

Abstract

Initiation of genetic recombination at meiosis in Ascomycete fungi is thought to occur from fixed sites, at least in the majority of events. The simplest way to initiate recombination from fixed sites would be if an endonuclease recognized them and cut one strand of the DNA duplex to allow formation of asymmetric hybrid DNA, as proposed in the Meselson–Radding model of recombination1. However data from the Neurospora crassa his-3 gene2 and the conversion patterns of a mutation in Schizosaccharomyces pombe3 and one in Sordaria brevicollis4, require this idea of initiation to be modified. Here we propose a hypothesis of initiation that will accommodate these experimental observations, which involves the recognition of initiation sites by an endonuclease capable of migrating along a DNA duplex and that cuts in trans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meselson, M. S. & Radding, C. R. Proc. natn. Acad. Sci. U.S.A. 72, 358–361 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Catcheside, D. G. & Angel, T. Aust. J. biol. Sci. 27, 219–229 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Gutz, H. Genetics 69, 317–337 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. MacDonald, M. V. & Whitehouse, H. L. K. Genet. Res. 34, 87–119 (1979).

    Article  Google Scholar 

  5. Angel, T., Austin, B. & Catcheside, D. G. Aust. J. biol. Sci. 23, 1229–1240 (1970).

    Article  CAS  PubMed  Google Scholar 

  6. Meselson, M. & Yuan, R. Nature 217, 1110–1114 (1968).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Horiuchi, K. & Zinder, N. D. Proc. natn. Acad. Sci. U.S.A. 69, 3220–3224 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Horiuchi, K., Vovis, G. F. & Zinder, N. D. J. biol. Chem. 249, 543–552 (1974).

    CAS  PubMed  Google Scholar 

  9. Hartman, N. & Zinder, N. D. J. molec. Biol. 85, 345–356 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. Brammar, W. J., Murray, N. E. & Winton, S. J. molec. Biol. 90, 633–647 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. Linn, S., Lautenberger, J. A., Eskin, B. & Lackey, D. Fedn Proc. 33, 1128–1134 (1974).

    CAS  Google Scholar 

  12. Rosamond, J., Endlich, B. & Linn, S. J. molec. Biol. 129, 619–635 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Sprague, K. U., Faulds, D. H. & Smith, G. R. Proc. natn. Acad. Sci. U.S.A. 75, 6182–6186 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Schultz, D. W., Swindle, J. & Smith, G. R. J. molec. Biol. 146, 275–286 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Stahl, F. W. & Stahl, M. M. Molec. gen. Genet. 140, 29–37 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad, A., Holloman, W. K. & Holliday, R. Nature 258, 54–56 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ross, P. & Howard-Flanders, P. J. molec. Biol. 117, 137–158 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. Ross, P. & Howard-Flanders, P. J. molec. Biol. 117, 159–174 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. Cassuto, E., Mursalim, J. & Howard-Flanders, P. Proc. natn. Acad. Sci. U.S.A. 75, 620–624 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Lissouba, P., Mousseau, J., Rizet, G. & Rossignol, J-L. Adv. Genet. 11, 343–380 (1962).

    Article  Google Scholar 

  21. Kitani, Y. & Olive, L. S. Genetics 62, 23–66 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kitani, Y. & Whitehouse, H. L. K. Genet. Res. 24, 229–250 (1974).

    Article  Google Scholar 

  23. Whitehouse, H. L. K. Genet. Res. 24, 251–279 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markham, P., Whitehouse, H. A hypothesis for the initiation of genetic recombination in eukaryotes. Nature 295, 421–423 (1982). https://doi.org/10.1038/295421a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295421a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing