Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isolation from murine sarcoma cells of novel transforming growth factors potentiated by EGF

Abstract

Polypeptides classified as transforming growth factors (TGFs) have been found in various neoplastic cells and tumour tissues1–5, and most recently in many non-neoplastic tissues6. These TGFs are low-molecular-weight (7,000–20,000) acid-stable polypeptides, which induce anchorage-dependent non-neoplastic indicator cells to form progressively growing colonies in soft agar. Certain extracellular TGFs isolated from conditioned medium derived from both rodent sarcoma virus-transformed cells and several human tumour cell lines have been shown to compete with epidermal growth factor (EGF) for membrane receptors1,3,4,7. By direct extraction from Moloney sarcoma virus (MSV)-transformed cells, we have isolated two distinct classes of intracellular TGFs, one of which competes with EGF for receptor binding sites, whereas the other does not. We report here that after purification by HPLC, the colony-forming activity of the TGFs that do not compete with EGF for receptor binding was enhanced 100-fold by the addition of EGF. This ability to enhance the growth-stimulating effects of the TGFs is specific to EGF, as insulin, the insulin-like growth factors, platelet-derived growth factor and nerve growth factor do not show this property. In contrast, the colony-forming activity of TGFs that compete with EGF for receptor binding is not potentiated by EGF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Larco, J. E. & Todaro, G. J. Proc. natn. Acad. Sci. U.S.A. 75, 4001–4005 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Roberts, A. B. et al. Proc. natn. Acad. Sci. U.S.A. 77, 3494–3498 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Todaro, G. J., Fryling, C. & De Larco, J. E. Proc. natn. Acad. Sci. U.S.A. 77, 5258–5262 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Ozanne, B., Fulton, R. J. & Kaplan, P. L. J. cell. Physiol. 105, 163–180 (1980).

    Article  CAS  Google Scholar 

  5. Moses, H. L., Branum, E. L., Proper, J. A. & Robinson, R. A. Cancer Res. 41, 2842–2848 (1981).

    CAS  PubMed  Google Scholar 

  6. Roberts, A. B., Anzano, M. A., Lamb, L. C., Smith, J. M. & Sporn, M. B. Proc. natn. Acad. Sci. U.S.A. 78, 5339–5343 (1981).

    Article  ADS  CAS  Google Scholar 

  7. De Larco, J. E. & Todaro, G. J. J. cell. Physiol. 102, 267–277 (1980).

    Article  CAS  Google Scholar 

  8. De Larco, J. E. & Todaro, G. J. J. cell. Physiol. 94, 335–342 (1978).

    Article  CAS  Google Scholar 

  9. Topp, W. C., Rifkin, D., Graessmann, A., Chang, C. M. & Sleigh, M. J. Cold Spring Harb. Conf. Cell Proliferation Vol. 6 (eds Sato, G. H. & Ross, R.) 361–370 (1979).

    Google Scholar 

  10. Wrann, M., Fox, C. F. & Ross, R. Science 210, 1363–1365 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Shoyab, M., De Larco, J. E. & Todaro, G. J. Nature 279, 387–391 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Magun, B. E., Matrisian, L. M. & Bowden, G. T. J. biol. Chem. 255, 6373–6381 (1980).

    CAS  PubMed  Google Scholar 

  13. Rozengurt, E., Brown, K. D. & Pettican, P. J. biol. Chem. 256, 716–722 (1981).

    CAS  PubMed  Google Scholar 

  14. Johnson, L. K., Baxter, J. D., Vlodavsky, I. & Gospodarowicz, D. Proc. natn. Acad. Sci. U.S.A. 77, 394–398 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Kahn, P. & Shin, S. J. Cell Biol. 82, 1–16 (1979).

    Article  CAS  Google Scholar 

  16. Cifone, M. A. & Fidler, I. J. Proc. natn. Acad. Sci. U.S.A. 77, 1039–1043 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Harrison, J. & Auersperg, N. Science 213, 218–219 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Seif, R. J. Virol. 36, 421–428 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rose, S. P., Stahn, R., Passovoy, D. S. & Herschman, H. Experientia 32, 913–915 (1976).

    Article  CAS  Google Scholar 

  20. Fisher, P. B., Bozzone, J. H. & Weinstein, I. B. Cell 18, 695–705 (1979).

    Article  CAS  Google Scholar 

  21. Roberts, A. B., Anzano, M. A., Frolik, C. A. & Sporn, M. B. Cold Spring Harb. Conf. Cell Proliferation (in the press).

  22. Hollenberg, M. D. Vitam. Horm. 37, 69–110 (1979).

    Article  CAS  Google Scholar 

  23. Sporn, M. B., Newton, D. L., Roberts, A. B., De Larco, J. E. & Todaro, G. J. in Molecular Actions and Targets for Cancer Chemotherapeutic Agents (eds Sartorelli, A. C., Bertino, J. R. & Lazo, J. S.) 541–554 (Academic, New York, 1981).

    Google Scholar 

  24. Savage, C. R. & Cohen, S. J. biol. Chem. 247, 7609–7611 (1972).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, A., Anzano, M., Lamb, L. et al. Isolation from murine sarcoma cells of novel transforming growth factors potentiated by EGF. Nature 295, 417–419 (1982). https://doi.org/10.1038/295417a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295417a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing