Diachronous uplift of the Tibetan plateau starting 40?Myr ago

Abstract

The uplift of the Tibetan plateau is generally regarded as a response to the convective removal of the lower portion of the thickened Asian lithosphere1. This removal is also thought to be responsible for the east–west extension2 that took place during the India–Asia collision. The timing of these events has been a subject of great interest for understanding mountain-building processes, collisional tectonics and the influence of these processes on climate change3,4. In western Tibet, potassic lavas related to east–west extension were found to have been extruded over the past 20?Myr (refs 5, 6). Here we report the widespread occurrence of magmas in eastern Tibet which show similar geochemical signatures to the potassic lavas to the west but formed 40–30?Myr ago. These magmatic activities suggest a diachronous uplift history for the Tibetan plateau, with the convective removal of the lower lithosphere inducing rapid uplift in the east beginning some 40?Myr ago and in the west about 20?Myr later. This observation is consistent with sedimentation records from the Ganges–Brahmaputra delta to the Bengal fan7,8 and can better account for the tectonically driven models for strontium isotope evolution in the ocean9 and global cooling10 over the past 40?Myr.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Simplified tectonic map of area around the Tibetan plateau (shaded area).
Figure 2: Representative 40Ar-39Ar radiometric dating spectra.
Figure 3: Comparison of compositions of rocks from eastern and western Tibet.

References

  1. 1

    Platt, J. P. & England, P. C. Convective removal of lithosphere beneath mountain belts: Thermal and mechanical consequences. Am. J. Sci. 294, 307–336 (1994).

    Article  ADS  Google Scholar 

  2. 2

    Coleman, M. & Hodges, K. Evidence for Tibetan plateau uplift before 14?Myr ago from a new minimum age for east-west extension. Nature 374, 49–52 (1995).

    CAS  Article  ADS  Google Scholar 

  3. 3

    Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663–1670 (1992.)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Molnar, P., England, P. & Martinod, J. Mantle dynamics, the uplift of the Tibetan pleateau, and the Indian monsoon. Rev. Geophys. 31, 357–396 (1993).

    Article  ADS  Google Scholar 

  5. 5

    Turner, S.et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature 364, 50–54 (1993).

    CAS  Article  ADS  Google Scholar 

  6. 6

    Turner, S.et al. Post-collisional, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol. 37, 45–71 (1996).

    CAS  Article  ADS  Google Scholar 

  7. 7

    Lindsay, J. F., Holliday, D. W. & Hulbert, A. G. Sequence stratigraphy and the evolution of the Ganges-Brahmaputra Delta complex. Am. Assoc. Petrol. Geol. Bull. 75, 1233–1254 (1991).

    Google Scholar 

  8. 8

    Curray, J. R. Sediment volume and mass beneath the Bay of Bengal. Earth Planet. Sci. Lett. 125, 371–383 (1994).

    Article  ADS  Google Scholar 

  9. 9

    Richter, F. R., Rowley, D. B. & DePaolo, D. J. Sr isotope evolution of seawater: The role of tectonics. Earth Planet. Sci. Lett. 109, 11–23 (1992).

    CAS  Article  ADS  Google Scholar 

  10. 10

    Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    CAS  Article  ADS  Google Scholar 

  11. 11

    Copeland, P., Harrison, T. M., Pan, Y., Kidd, W. S. F. & Roden, M. Thermal evolution of the Gangdese batholith, southern Tibet: A history of episodic unroofing. Tectonics 14, 223–236 (1995).

    Article  ADS  Google Scholar 

  12. 12

    Zhang, Y. Q., Xie, Y. W. & Tu, G. Z. Preliminary studies of the alkali-rich intrusive rocks in the Ailaoshan-Jinshajiang belt and their bearing on rift tectonics. Acta Petrol. Sinica 3, 17–26 (1987).

    Google Scholar 

  13. 13

    Pearce, J. A. & Mei, H. Volcanic rocks of the 1985 Geotraverse: Lhasa to Golmud. Phil. Trans. R. Soc. Lond. A 327, 169–201 (1988).

    CAS  Article  ADS  Google Scholar 

  14. 14

    Zhu, B. Q., Zhang, Y. Q. & Xie, Y. W. Isotope characteristics of Cenozoic potassic volcanic rocks from Haidong, Yunnan, and their implications for subcontinental mantle evolution in southwestern China. Geochimica 21, 201–212 (1992).

    Google Scholar 

  15. 15

    Bureau of Geology and Mineral Resources of Xizang Region Regional Geology of Xizang (Tibet) (Geol. Publ. House, Beijin, (1993)).

    Google Scholar 

  16. 16

    Chung, S. L.et al. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology 25, 311–314 (1997).

    CAS  Article  ADS  Google Scholar 

  17. 17

    Ratschbacher, L., Frisch, W., Chen, C. & Pan, G. in The Tectonic Evolution of Asia(eds Yin, A. & Harrison, T. M.) 227–249 (Cambridge Univ. Press, (1995)).

    Google Scholar 

  18. 18

    Holt, W. E., Ni, J. F., Wallace, T. C. & Haines, A. J. The active tectonics of the eastern Himalayan syntaxis and surrounding regions. J. Geophys. Res. 96, 14595–14632 (1991).

    Article  ADS  Google Scholar 

  19. 19

    Beck, R. A.et al. Stratigraphic evidence for an early collision between northwest India and Asia. Nature 373, 55–57 (1995).

    CAS  Article  ADS  Google Scholar 

  20. 20

    Lee, T. Y. & Lawver, L. A. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251, 85–138 (1995).

    Article  ADS  Google Scholar 

  21. 21

    Bureau of Geology and Mineral Resources of Yunnan Province Regional Geology of Yunnan Province (Geol. Publ. House, Beijin, (1990)).

  22. 22

    Leloup, P. H.et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251, 3–84 (1995).

    Article  ADS  Google Scholar 

  23. 23

    Kan, R. J., Hu, H. X., Zeng, Rr. S., Mooney, W. D. & McEvilly, T. V. Crustal structure of Yunnan Province, People's Republic of China, from seismic refraction profiles. Science 234, 433–437 (1986).

    CAS  Article  ADS  Google Scholar 

  24. 24

    Houseman, G. From mountains to basin. Nature 379, 771–772 (1996).

    CAS  Article  ADS  Google Scholar 

  25. 25

    Copeland, P. & Harrison, T. M. Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite. Geology 18, 354–357 (1990).

    CAS  Article  ADS  Google Scholar 

  26. 26

    Johnson, M. R. W. Volume balance of erosional loss and sediment deposition related to Himalayan uplifts. J. Geol. Soc. Lond. 151, 217–220 (1994).

    Article  Google Scholar 

  27. 27

    Arnaud, N. O.et al. Ages of magmatism and tectonism of north eastern Kunlun, China. 30th Int. Geol. Congr. (Beijing) Abstr. 1, 192 (1996).

    Google Scholar 

  28. 28

    Trapponnier, P., Peltzer, G., Armijo, R., Le Dain, A. Y. & Cobbold, P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10, 611–616 (1982).

    Article  ADS  Google Scholar 

  29. 29

    Wang, P. L.et al. Movement of the Aialo Shan-Red River shear zone: A Vietnamese perspective from thermochronological evidence. Eos 78, F649 (1997).

    Google Scholar 

  30. 30

    Yin, A.et al. Tertiary structural evolution of the Gangdese thrust system in southeastern Tibet. J. Geophys. Res. 99, 18175–18201 (1994).

    Article  ADS  Google Scholar 

  31. 31

    Steiger, R. H. & Jäger, E. Submission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362 (1977).

    CAS  Article  ADS  Google Scholar 

  32. 32

    Lo, C. H. & Lee, C. Y. 40Ar/39Ar method of K-Ar age determination of geological samles using sing-Hua Open-pool (HOR) Reactor. J. Geol. Soc. China 37, 143–164 (1994).

    CAS  Google Scholar 

  33. 33

    Lo, C. H., Onstot, T., Chen, C. H. & Lee, T. Ar/Ar dating of andesitic volcanism in the Luzon arc near Taiwan. Chem. Geol. 114, 157–178 (1994).

    CAS  Article  ADS  Google Scholar 

  34. 34

    Le Fort, P. Granite in the tectonic evolution of the Himalaya, Karakorum, and southern Tibet. Phil. Trans. R. Soc. Lond. A 327, 281–299 (1988).

    Article  ADS  Google Scholar 

  35. 35

    Le Maitre, R. W. (ed.) A Classification of Igneous Rocks and Glossary of Terms(Blackwell Sci. Publ, Oxford, (1989)).

    Google Scholar 

  36. 36

    Sun, S.-s. & McDonough, W. F. in Magmatism in the Ocean Basins(eds Saunders, A. D. & Norry, M. J.) 313–345 (Spec. Publ. 42, Geol. Soc., London, (1989)).

    Google Scholar 

Download references

Acknowledgements

We thank A. Crawford, S.-s. Sun and F. Yang for suggestions on the earlier drafts, and N. Rogers and P. England for reviews which significantly improved this Letter. This study was supported by the National Science Council, Taiwan and the National Science Foundation, China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sun-Lin Chung.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, SL., Lo, CH., Lee, TY. et al. Diachronous uplift of the Tibetan plateau starting 40?Myr ago. Nature 394, 769–773 (1998). https://doi.org/10.1038/29511

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing