Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of E. coli RecA protein directed strand exchanges in post-replication repair of DNA

Abstract

Escherichia coli mutants carrying recA are both recombination deficient and unable to perform post-replication repair1,2. The product of the recA gene regulates the inducible DNA repair functions (the SOS response to DNA damage)3,4, and is directly involved in homologous pairing5–8 and strand exchange9–12, two reactions fundamental to recombination and post-replication repair. The filling of post-replication gaps is thought to occur by homologous pairing of the gapped DNA duplex with an intact duplex, followed by cutting of the intact molecule so that sister strand exchanges can take place. Using in vitro systems, we have shown previously that purified RecA protein binds cooperatively to duplex DNA that contains gaps13, and promotes joint molecule formation (synapsis) between gapped and intact duplexes7,8. Moreover, RecA protein promotes a reciprocal exchange of strands between paired DNA molecules10,12,14. Here, we investigate the mechanism of sister strand exchange thought to occur during post-replication repair. We show that RecA protein initiates strand exchange from a nicked duplex, transferring the 3′-OH terminus at the nick into the single-stranded (ss) region of the gapped molecule. In the presence of ATP, two heteroduplex molecules are formed as RecA protein drives the reciprocal exchanges in one direction starting at the site of the original crossover.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clark, A. J. & Margulies, A. D. Proc. natn. Acad. Sci. U.S.A. 53, 451–459 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Smith, K. C. & Muen, D. H. J. molec. Biol. 51, 453–472 (1970).

    Article  Google Scholar 

  3. Little, J. W., Edmiston, S. H., Pacelli, L. Z. & Mount, D. W. Proc. natn. Acad. Sci. U.S.A. 77, 3225–3229 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Kenyon, C. J. & Walker, G. C. Proc. natn. Acad. Sci. U.S.A. 77, 2819–2823 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Shibata, T., DasGupta, C., Cunningham, R. P. & Radding, C. M. Proc natn. Acad. Sci. U.S.A. 76, 1638–1642 (1979).

    Article  ADS  CAS  Google Scholar 

  6. McEntee, K., Weinstock, G. M. & Lehman, I. R. Proc. natn. Acad. Sci. U.S.A. 76, 2615–2619 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Cassuto, E., West, S. C., Mursalim, J., Conlon, S. & Howard-Flanders, P. Proc. natn. Acad. Sci. U.S.A. 77, 3962–3966 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Cunningham, R. P., DasGupta, C., Shibata, T. & Radding, C. M. Cell 20, 223–235 (1980).

    Article  CAS  Google Scholar 

  9. DasGupta, C., Shibata, T., Cunningham, R. P. & Radding, C. M. Cell 22, 437–446 (1980).

    Article  CAS  Google Scholar 

  10. West, S. C., Cassuto, E. & Howard-Flanders, P. Proc. natn. Acad. Sci. U.S.A. 78, 2100–2104 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Cox, M. M. & Lehman, I. R. Proc. natn. Acad. Sci. U.S.A. 78, 3433–3437 (1981).

    Article  ADS  CAS  Google Scholar 

  12. DasGupta, C., Wu, A. M., Kahn, R., Cunningham, R. P. & Radding, C. M. Cell 25, 507–516 (1981).

    Article  CAS  Google Scholar 

  13. West, S. C., Cassuto, E., Mursalim, J. & Howard-Flanders, P. Proc. natn. Acad. Sci. U.S.A. 77, 2569–2573 (1980).

    Article  ADS  CAS  Google Scholar 

  14. West, S. C., Cassuto, E. & Howard-Flanders, P. Proc. natn. Acad. Sci. U.S.A. 78, 6149–6153 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Sanger, F. et al. J. molec. Biol. 125, 225–246 (1978).

    Article  CAS  Google Scholar 

  16. Kahn, R., Cunningham, R. P., DasGupta, C. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 78, 4786–4790 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Cox, M. M. & Lehman, I. R. Proc. natn. Acad. Sci. U.S.A. 78, 6018–6022 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Roberts, J. W., Roberts, C. W. & Craig, N. L. Proc. natn. Acad. Sci. U.S.A. 75, 4714–4718 (1975).

    Article  ADS  Google Scholar 

  19. Ross, P. & Howard-Flanders, P. J. molec. Biol. 117, 137–158 (1977).

    Article  CAS  Google Scholar 

  20. Kemper, B., Garabett, M. & Courage, U., Eur. J. Biochem. 115, 131–141 (1981).

    Google Scholar 

  21. Shortle, D. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 75, 2170–2174 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, S., Cassuto, E. & Howard-Flanders, P. Mechanism of E. coli RecA protein directed strand exchanges in post-replication repair of DNA. Nature 294, 659–662 (1981). https://doi.org/10.1038/294659a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294659a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing