Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Asynchrony of Antarctic and Greenland climate change during the last glacial period

Abstract

A central issue in climate dynamics is to understand how the Northern and Southern hemispheres are coupled during climate events. The strongest of the fast temperature changes observed in Greenland (so-called Dansgaard–Oeschger events) during the last glaciation have an analogue in the temperature record from Antarctica. A comparison of the global atmospheric concentration of methane as recorded in ice cores from Antarctica and Greenland permits a determination of the phase relationship (in leads or lags) of these temperature variations. Greenland warming events around 36 and 45 kyr before present lag their Antarctic counterpart by more than 1 kyr. On average, Antarctic climate change leads that of Greenland by 1–2.5 kyr over the period 47–23 kyr before present.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: 10Be fluxes from Byrd32, Vostok33 and GRIP31 ice cores.
Figure 2: GRIP1, Byrd15 and Vostok16 isotopic and CH4 records on the common timescale (GRIP timescale in years before 1989).
Figure 3: Plot of Δage versus ice age.

References

  1. 1

    Dansgaard, W.et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218– 220 (1993).

    ADS  Article  Google Scholar 

  2. 2

    Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Oeschger, H.et al. in Climate Processes and Climate Sensitivity(eds Hansen, J. E. & Takahashi, T.) 299–306 (Vol. 29, Geophys. Monogr. Ser., Am. Geophys. Union, Washington DC, (1984)).

    Book  Google Scholar 

  4. 4

    Johnsen, S., Dahl-Jensen, D., Dansgaard, W. & Gundestrup, N. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus B 47, 624– 629 (1995).

    ADS  Article  Google Scholar 

  5. 5

    Schwander, J.et al. Age scale of the air in the summit ice: Implication for glacial–interglacial temperature change. J. Geophys. Res. 102, 19483–19494 (1997).

    ADS  Article  Google Scholar 

  6. 6

    Bond, G.et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993).

    ADS  Article  Google Scholar 

  7. 7

    Roemmich, D. Estimation of meridional heat flux in the North Atlantic by inverse methods. J. Phys. Oceanogr. 10, 1972– 1983 (1981).

    ADS  Article  Google Scholar 

  8. 8

    Broecker, W. S. & Denton, G. H. The role of ocean–atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501 (1989).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Charles, C. D., Lynch-Stieglitz, J., Ninnemann, U. S. & Fairbanks, R. G. Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations. Earth Planet. Sci. Lett. 142, 19–27 (1996).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Behl, R. J. & Kennett, J. P. Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature 379, 243–379 ( 1996).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385 , 707–710 (1997).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Grimm, E. C., Jacobson, G. L. J, Watts, W. A., Hansen, B. C. S. & Maasch, K. A. A50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events. Science 261, 198– 200 (1993).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Benson, L. V.et al. Climatic and hydrologic oscillations in the Owens Lake basin and adjacent Sierra Nevada, California. Science 274 , 746–749 (1996).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Chappellaz, J.et al . Synchronous changes in atmospheric CH4and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445 ( 1993).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Johnsen, S. J., Dansgaard, W., Clausen, H. B. & Langway, C. C. Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235, 429–434 ( 1972).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Jouzel, J.et al. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329 , 403–408 (1987).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bender, M.et al. Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372, 663– 666 (1994).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Stocker, T. F., Wright, D. G. & Mysak, L. A. Azonally averaged, coupled ocean–atmosphere model for paleoclimate studies. J. Clim. 5, 773–797 (1992).

    ADS  Article  Google Scholar 

  19. 19

    Blunier, T.et al. Timing of the Antarctic Cold Reversal and the atmospheric CO 2increase with respect to the Younger Dryas event. Geophys. Res. Lett. 24, 2683–2686 (1997).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Hammer, C. U.et al. Report on the Stratigraphic Dating of the GRIP Ice Core(Spec. Rep. of the Geophysical Dept, Niels Bohr Institute for Astronomy, Physics and Geophysics, Univ. Copenhagen, in the press).

  21. 21

    Johnsen, S. J.et al . Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311– 313 (1992).

    ADS  Article  Google Scholar 

  22. 22

    Crowley, T. J. North Atlantic deep water cools the Southern Hemisphere. Paleoceanography 7, 489–497 ( 1992).

    ADS  Article  Google Scholar 

  23. 23

    Stocker, T. F. & Wright, D. G. Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanography 11, 773–796 ( 1996).

    ADS  Article  Google Scholar 

  24. 24

    Schiller, A., Mikolajewicz, U. & Voss, R. The stability of the thermohaline circulation in a coupled ocean–atmosphere general circulation model. Clim. Dyn. 13, 325–348 (1997).

    Article  Google Scholar 

  25. 25

    Dahl-Jensen, D., Johnsen, S. J., Hammer, C. U., Clausen, H. B. & Jouzel, J. in Ice in the Climate System(ed. Peltier, W. R.) 517–532 (Springer, Berlin, ((1993)).

    Book  Google Scholar 

  26. 26

    Johnsen, S. J., Dansgaard, W. & White, J. W. C. The origin of Arctic precipitation under present and glacial conditions. Tellus B 41, 452 –468 (1989).

    ADS  Article  Google Scholar 

  27. 27

    Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 ( 1998).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. & Raynaud, D. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374 , 46–49 (1995).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Robin, G. deQ. in The Climatic Record in Polar Ice Sheets(ed. Robin, G. de Q.) 180 –184 (Cambridge Univ. Press, London, ( 1983)).

    Google Scholar 

  30. 30

    Salamatin, A. N.et al . Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica). J. Geophys. Res. 103, 8963–8978 (1998.)

    ADS  Article  Google Scholar 

  31. 31

    Yiou, F.et al. Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland. J. Geophys. Res. 102, 26783– 26794 (1997).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Beer, J.et al. The Last Deglaciation: Absolute and Radiocarbon Chronologies(eds Bard, E. & Broecker, W. S.) 141–153 (NATO ASI Ser. I 2, Springer, Berlin, (1992)).

    Book  Google Scholar 

  33. 33

    Raisbeck, G. M.et al . in The Last Deglaciation: Absolute and Radiocarbon Chronologies (eds Bard, E. & Broecker, W. S.) 127–140 (NATO ASI Ser. I 2, Springer, Berlin, (1992)).

    Book  Google Scholar 

  34. 34

    Jouzel, J.et al. The two-step shape and timing of the last deglaciation in Antarctica. Clim. Dyn. 11, 151–161 (1995).

    Article  Google Scholar 

  35. 35

    Sowers, T. & Bender, M. Climate records covering the last deglaciation. Science 269, 210– 214 (1995).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Siegenthaler, U., Eicher, U., Oeschger, H. & Dansgaard, W. Lake sediments as continental δ18O records from the transition of glacial–interglacial. Ann. Glaciol. 5, 149–152 (1984).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Bond, G. C. & Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last deglaciation. Science 267, 1005–1010 ( 1995).

    ADS  CAS  Article  Google Scholar 

  38. 38

    Stocker, T. F. & Wright, D. G. The effect of a succession of ocean ventilation changes on radiocarbon. Radiocarbon 40, 359–366 ( 1998).

    CAS  Article  Google Scholar 

  39. 39

    Stocker, T. F. & Wright, D. G. Rapid transitions of the ocean's deep circulation induced by changes in surface water fluxes. Nature 351, 729–732 (1991).

    ADS  Article  Google Scholar 

  40. 40

    Wright, D. G. & Stocker, T. F. in Ice in the Climate System(ed. Peltier, W. R.) 395–416 (NATO ASI Ser. I 12, Springer, Berlin, (1993)).

    Book  Google Scholar 

  41. 41

    MacAyeal, D. R. Alow-order model of the Heinrich event cycle. Paleoceanography 8, 767–773 ( 1993).

    ADS  Article  Google Scholar 

  42. 42

    MacAyeal, D. R. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography 8, 775–784 (1993).

    ADS  Article  Google Scholar 

  43. 43

    Stocker, T. F., Wright, D. G. & Broecker, W. S. The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanography 7, 529–541 (1992).

    ADS  Article  Google Scholar 

  44. 44

    Tziperman, E. Inherently unstable climate behaviour due to weak thermohaline ocean circulation. Nature 386, 592–595 (1997).

    ADS  CAS  Article  Google Scholar 

  45. 45

    Bard, E.et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241– 244 (1996).

    ADS  CAS  Article  Google Scholar 

  46. 46

    Jouzel, J. & Merlivat, L. Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation. J. Geophys. Res. 89, 11749–11757 ( 1984).

    ADS  CAS  Article  Google Scholar 

  47. 47

    Hammer, C. U., Clausen, H. B. & Langway, C. C. J Electrical conductivity method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica. Ann. Glaciol. 20, 115–120 ( 1994).

    ADS  Article  Google Scholar 

  48. 48

    Whillans, I. M. Ice flow along the Byrd station strain network, Antarctica. J. Glaciol. 24, 15–28 ( 1979).

    ADS  Article  Google Scholar 

  49. 49

    Ritz, C. Un Modèle Thermo-Mécanique d'évolution Pour le Bassin Glaciaire Antarctique Vostok-glacier Byrd: Sensiblité aux Valeurs des Paramètres Mal Connus.Thesis, Univ. J. Fourier(( 1992)).

    Google Scholar 

  50. 50

    Jouzel, J.et al. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364, 407–412 (1993).

    ADS  Article  Google Scholar 

  51. 51

    Lorius, C., Merlivat, L., Jouzel, J. & Pourchet, M. A30,000-yr isotope climatic record from Antarctic ice. Nature 280, 644–648 (1979).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work, in the frame of the Greenland Ice Core Project (GRIP), was supported by the University of Bern, the Swiss National Science Foundation, the Federal Department of Energy (BFE), the Schwerpunktprogramm Umwelt (SPPU) of the Swiss National Science Foundation, the EC program “Environment and Climate 1994–1998”, the Fondation de France and the Programm National de Dynamique du Climat of CNRS. We thank F. Finet for the CH4 measurements on Vostok and part of GRIP, C. Rado and J. R. Petit for ice sampling at Vostok station, C. C. Langway for providing us with additional Byrd samples and F. Yiou, G. Raisbeck and J. Beer for the 10Be data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Blunier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blunier, T., Chappellaz, J., Schwander, J. et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–743 (1998). https://doi.org/10.1038/29447

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing