Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K transport in skeletal muscle

Abstract

During potassium depletion in rats, the skeletal muscles lose potassium and gain sodium, whereas the Na-K contents of the liver1, brain, cerebrospinal fluid2,3, erythrocytes and heart4 remain virtually constant for several weeks. Since the selective loss of potassium ions from the muscles may result from inhibition of the active Na-K transport5, it is of interest to determine whether potassium depletion is associated with a reduced capacity for Na-K pumping. This study explores this possibility with measurements of 3H-ouabain binding and 42K uptake in soleus and extensor digitorum longus muscles obtained from rats or mice during potassium deficiency induced either by K-free diet, a diuretic or a potassium-binding resin. Potassium depletion leads to a pronounced (up to 78%) and reversible decrease in the total number of 3H-ouabain binding sites and a reduced capacity for Na-K pump-mediated 42K uptake. This decrease in the number of functional Na-K pumps may be of importance for the selective loss of potassium from skeletal muscle and its maintenance during potassium depletion. Furthermore, it favours the redistribution of digitalis glycosides from the periphery to the heart and provides an explanation for the increased digitalis toxicity seen in patients suffering from chronic potassium depletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Heppel, L. A. Am. J. Physiol. 127, 385–392 (1939).

    CAS  Google Scholar 

  2. Bradbury, M. W. B. & Kleeman, C. R. Am. J. Physiol. 213, 519–528 (1967).

    CAS  PubMed  Google Scholar 

  3. Nattie, E. E. Life Sci. 21, 1851–1855 (1977).

    Article  CAS  Google Scholar 

  4. Erdmann, E. & Krawietz, W. Acta biol. med. germ. 36, 879–883 (1977).

    CAS  PubMed  Google Scholar 

  5. Akaike, N. Brain Res. 178, 175–178 (1979).

    Article  CAS  Google Scholar 

  6. Kohn, P. G. & Clausen, T. Biochim. biophys. Acta 225, 277–290 (1971).

    Article  CAS  Google Scholar 

  7. Chinet, A., Clausen, T. & Girardier, L. J. Physiol., Lond. 265, 43–61 (1977).

    Article  CAS  Google Scholar 

  8. Crettaz, M., Prentki, M., Zaninetti, D. & Jeanrenaud, B. Biochem. J. 186, 525–534 (1980).

    Article  CAS  Google Scholar 

  9. Clausen, T. & Hansen, O. Biochim. biophys. Acta 345, 387–404 (1974).

    Article  CAS  Google Scholar 

  10. Clausen, T. & Hansen, O. J. Physiol., Lond. 270, 415–430 (1977).

    Article  CAS  Google Scholar 

  11. Clausen, T., Sellin, L. C. & Thesleff, S. Acta physiol. scand. 111, 373–375 (1981).

    Article  CAS  Google Scholar 

  12. Clausen, T. & Kohn, P. G. J. Physiol., Lond. 265, 19–42 (1977).

    Article  CAS  Google Scholar 

  13. Chan, P. C. & Sanslone, W. R. Archs Biochem. Biophys. 134, 48–52 (1969).

    Article  CAS  Google Scholar 

  14. Boardman, L. J., Lamb, J. F. & McCall, D. J. Physiol., Lond. 225, 619–635 (1972).

    Article  CAS  Google Scholar 

  15. Pollack, L. R., Tate, E. H. & Cook, J. S. J. cell. Physiol. 106, 85–97 (1981).

    Article  CAS  Google Scholar 

  16. Friedman, M. & Bine, R. Jr Am. J. med. Sci. 214, 633–638 (1947).

    Article  CAS  Google Scholar 

  17. Kleiger, R. E., Seta, K., Vitale, J. J. & Lown, B. Am. J. Cardiol. 17, 520–527 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nørgaard, A., Kjeldsen, K. & Clausen, T. Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K transport in skeletal muscle. Nature 293, 739–741 (1981). https://doi.org/10.1038/293739a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293739a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing