Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tumour promoter phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action

Abstract

The mouse skin tumour promoter phorbol-12-myristate-13-acetate (PMA) does not form covalent adducts with cellular DNA and its mutagenic potency in several systems is low or absent1–6. There have been conflicting reports of the capacity of PMA to produce sister chromatid exchanges (SCEs)3,6–8. As PMA induces the formation of superoxide radicals in polymorphonuclear leukocytes and mitogen-stimulated lymphocytes9–11, we suggested that it might produce DNA damage via indirect action by the formation of intermediate active oxygen species12,13. As is typical for other DNA-damaging agents which mainly act indirectly, for example, ionizing radiation, PMA would be expected to have low mutagenicity but high clastogenic (chromosome-breaking) activity14. In agreement with this, we report here that PMA, but not its weakly or non-promoting derivatives, induced chromosomal aberrations with high efficiency in phytohaemagglutinin (PHA)-stimulated human lymphocytes, but was only a weak producer of SCE. This activity was suppressed by superoxide dismutase, which catalyses the breakdown of superoxide radicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carcinogenesis Vol. 2 (eds Slaga, T., Sivak, A. & Boutwell, R.) (Raven, New York, 1978).

  2. Diamond, L., O'Brien, G. & Baird, W. Adv. Cancer Res. 32, 1–74 (1980).

    Article  CAS  Google Scholar 

  3. Kinsella, A. & Radman, M. Proc. natn. Acad. Sci. U.S.A. 75, 6149–6153 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Lankas, G., Baxter, C. & Christian, R. Mutat. Res. 45, 153–156 (1977).

    Article  CAS  Google Scholar 

  5. Trosko, J., Chang, C., Yotti, L. & Chu, E. Cancer Res. 37, 188–193 (1977).

    CAS  PubMed  Google Scholar 

  6. Thompson, L., Baker, R., Carrano, A. & Brookman, K. Cancer Res. 40, 3245–3251 (1980).

    CAS  PubMed  Google Scholar 

  7. Nagasawa, H. & Little, J. Proc. natn. Acad. Sci. U.S.A. 76, 1943–1947 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Loveday, K. & Latt, S. Mutat. Res. 67, 343–348 (1979).

    Article  CAS  Google Scholar 

  9. De Chatelet, L., Shirley, P. & Johnston, R. Blood 47, 545–554 (1976).

    CAS  Google Scholar 

  10. Goldstein, B., Witz, G., Amoruso, M. & Troll, W. Biochem. biophys. Res. Commun. 88, 854–860 (1979).

    Article  CAS  Google Scholar 

  11. Mueller, G., Wertz, P., Kwong, C., Anderson, K. & Wrighton, J. in Carcinogenesis: Fundamental Mechanisms and Environmental Effects (eds Pullman, B., Ts'o, P. & Gelboin, H.) 319–333 (Reidel, Holland, 1980).

    Book  Google Scholar 

  12. Cerutti, P. & Remsen, F. in DNA Repair Processes: Cellular Senescence and Somatic Cell Genetics (eds Nichols, W. & Murphy, D.) 147–166 (Symposia Specialists, Miami, 1977).

    Google Scholar 

  13. Cerutti, P. in DNA Repair Mechanisms (eds Hanawalt, P., Friedberg, E. & Fox, C.) 717–722 (Academic, New York, 1978).

    Google Scholar 

  14. Kao, F. & Puck, T. J. Cell Physiol. 74, 245–258 (1969).

    Article  CAS  Google Scholar 

  15. Nichols, W. in The Cell Nucleus Vol. 2 (ed. Bush, H.) 437–458 (Academic, New York, 1974).

    Book  Google Scholar 

  16. Sperling, K. & Rao, P. Hum. Genet. 23, 235–258 (1974).

    Article  CAS  Google Scholar 

  17. Ole, G., Lindecke, J., Waldenmaier, K. & Sperling, K. Hum. Genet. 28, 159–162 (1978).

    Google Scholar 

  18. zur Hausen, H., O'Neill, F., Freese, U. & Hecker, E. Nature 272, 373–375 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Wolff, S. & Perry, P. Chromosoma (Berl.) 48, 342–358 (1974).

    Article  Google Scholar 

  20. Emerit, I. & Cerutti, P. Proc. natn. Acad. Sci. U.S.A. 78, 1868–1872 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Crossen, P. E. & Morgan, W. F. Expl Cell Res. 104, 453–457 (1977).

    Article  CAS  Google Scholar 

  22. Keck, M. & Emerit, I. Hum. Genet. 50, 277–283 (1979).

    Article  CAS  Google Scholar 

  23. Emerit, I. Z. Rheumaforsch. 39, 84–90 (1980).

    CAS  Google Scholar 

  24. zur Hausen, H., Bornkamm, G., Schmidt, R. & Hecker, F. Proc. natn. Acad. Sci. U.S.A. 76, 782–785 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Arya, S. Nature 284, 71–74 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Fisher, P., Weinstein, I., Eisenberg, D. & Ginsberg, H. Proc. natn. Acad. Sci. U.S.A. 75, 2311–2314 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Yamamoto, N. & zur Hausen, H. Nature 280, 244–245 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Monier, R., Daya-Grosjean, L. & Sarasin, A. in Carcinogenesis: Fundamental Mechanisms and Environmental Effects (eds Pullman, B., Ts'o, P. & Gelboin, H.) 371–378 (Reidel, Holland, 1980).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerit, I., Cerutti, P. Tumour promoter phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action. Nature 293, 144–146 (1981). https://doi.org/10.1038/293144a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293144a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing