Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Relative brain size and basal metabolic rate in terrestrial vertebrates

Abstract

Studies of the relationship between brain size and body size in terrestrial verteberates have a long history1–4. Demonstrations of regular relationships between brain and body size across species within selected vertebrate groups serve two purposes: (1) in comparison of species of different body size, empirically recognized ‘scaling effects’ can be taken into account; (2) empirical relationships may suggest useful working hypotheses regarding functional constraints (although they cannot directly reveal casual connections). It is widely accepted5,6 that brain size is scaled to keep pace with changes in body surface area (rather than volume), and this provides the basis for many interpretations of relative brain size. Re-examination of brain–body size relationships for large samples of species from three major vertebrate groups (mammals, birds, reptiles) now shows that there is no empirical foundation for the concept of scaling to body surface area. Instead, it seems that brain size may be linked to maternal metabolic turnover. This has implications not only for assessment of relative brain size in particular species, but also for pursuing links between brain size and ‘life strategies’.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Snell, O. Arch. Psychiatr. Nervkrankh. 23, 436–446 (1891).

    Article  Google Scholar 

  2. Dubois, E. Bull. Soc. Anthrop. Paris 8, 337–376 (1897).

    Google Scholar 

  3. Lapicque, L. C. r. Séanc. Soc. Biol. 5, 10 (1898).

    Google Scholar 

  4. Brandt, A. Bull. Soc. imp. nat. Moscow 40, 525–543 (1867).

    Google Scholar 

  5. Jerison, H. J. Evolution of the Brain and Intelligence (Academic, New York, 1973).

    Google Scholar 

  6. Bauchot, R. Brain Behav. Evol. 15, 1–18 (1978).

    CAS  Article  Google Scholar 

  7. Huxley, J. S. Problems of Relative Growth (Methuen, London, 1932).

    Google Scholar 

  8. Gould, S. J. Biol. Rev. 41, 587–640 (1966).

    CAS  Article  Google Scholar 

  9. Martin, R. D. Z. Morph. Anthrop. 71, 115–124 (1980).

    CAS  Google Scholar 

  10. Rubner, M. Z. Biol. 19, 535–562 (1883).

    Google Scholar 

  11. Kleiber, M. The Fire of Life: An Introduction to Animal Energetics (Wiley, New York, 1961).

    Google Scholar 

  12. Harvey, P. H. & Mace, G. M. in Current Problems in Sociobiology (Cambridge University Press, in the press).

  13. Hemmingsen, A. M. Rep. Steno Meml Hosp. 4, 7–58 (1950).

    Google Scholar 

  14. Hemmingsen, A. M. Rep. Steno Meml Hosp. 9, 1–110 (1960).

    Google Scholar 

  15. Lasiewski, R. C. & Dawson, W. R. Condor 69, 13–23 (1967).

    Article  Google Scholar 

  16. Dawson, T. J. & Hulbert, A. J. Am. J. Physiol. 218, 1233–1238 (1970).

    CAS  Google Scholar 

  17. Liu, C. T. & Higbee, G. A. J. appl. Physiol. 40, 101–104 (1976).

    CAS  Article  Google Scholar 

  18. Spector, W. S. Handbook of Biological Data (Saunders, Philadelphia, 1956).

    Google Scholar 

  19. Adams, T. in Comparative Physiology of Thermoregulation Vol. 2 (ed. Whittow, G. C.) 151–189 (Academic, New York, 1971).

    Google Scholar 

  20. Jarman, P. J. J. Zool. Lond. 166, 349–356 (1972).

    Article  Google Scholar 

  21. Ghubrial, L. I. Physiol. Zool. 43, 249–256 (1970).

    Article  Google Scholar 

  22. Brody, S. Bioenergetics and Growth (Rheinhold, New York, 1945).

    Google Scholar 

  23. Bauchot, R. & Stephen, H. Mammalia 30, 160–196 (1966); 33, 225–275 (1969).

    Article  Google Scholar 

  24. Crile, G. W. & Quiring, D. P. Ohio J. Sci. 40, 219–259 (1940).

    Google Scholar 

  25. von Bonin, G. J. gen. Physiol. 16, 379–389 (1937).

    Google Scholar 

  26. Count, E. W. Ann. N. Y. Acad. Sci. 46, 993–1122 (1947).

    ADS  Article  Google Scholar 

  27. Stephen, H., Bauchot, R. & Andy, O. J. in The Primate Brain (eds Nobak, C. R. & Montagna, W.) 289–297 (Appleton, New York, 1970).

    Google Scholar 

  28. Eisenberg, J. F. & Wilson, D. E. Evolution 32, 740–751 (1978).

    Article  Google Scholar 

  29. Crile, G. W. & Quiring, D. P. Ohio J. Sci. 40, 219–259 (1940).

    Google Scholar 

  30. Portmann, A. Alauda 14, 2–20 (1946); 15, 1–15 (1947).

    Google Scholar 

  31. Platel, R. in Biology of the Reptilia Vol. 9 (ed. Gans, C.) 147–171 (Academic, London, 1979).

    Google Scholar 

  32. Portmann, A. Biomorphology 1, 109–126 (1939); Rev. suisse zool. 72, 658–666 (1965).

    Google Scholar 

  33. Wirz, K. Acta anat. 63, 449–508 (1966).

    Article  Google Scholar 

  34. Martin, R. D. in Phylogeny of the Primates (eds Luckett, W. P. & Szalay, F. S.) 265–297 (Plenum, New York, 1975).

    Book  Google Scholar 

  35. Sacher, G. A. & Staffeldt, E. F. Am. Nat. 108, 593–616 (1974).

    Article  Google Scholar 

  36. Rudder, B. C. C. thesis, Univ. London (1979).

  37. Heinroth, O. in Tabulae Biologicae Vol. 5 (eds Oppenheimer, C. & Pincussen, L.) 716–741 (Junk, Berlin, 1930).

    Google Scholar 

  38. Rahn, H., Paganelli, C. V. & Ar, A. Resp. Physiol. 22, 297–309 (1974).

    CAS  Article  Google Scholar 

  39. Gould, S. J. Contr. Primatol. 5, 244–292 (1975).

    CAS  Google Scholar 

  40. Sacher, G. A. in CIBA Fdn Colloq. Ageing Vol. 5 (eds Wolstenholme, G. E. W. & O'Connor, M.) 115–133 (Churchill, London, 1959).

    Google Scholar 

  41. Müller, F. Verh. naturf. Ges. Basel 80, 1–31 (1969).

    Google Scholar 

  42. Western, D. Afr. J. Ecol. 17, 185–204 (1979).

    Article  Google Scholar 

  43. Payne, P. R. & Wheeler, E. F. Nature 215, 849–850, 1134–1136 (1967); Proc. Nutr. Soc. 27, 129–138 (1968).

    ADS  CAS  Article  Google Scholar 

  44. Leutenegger, W. Folia primatol. 20, 280–293 (1973).

    CAS  Article  Google Scholar 

  45. Robbins, C. T. & Robbins, B. L. Am. Nat. 114, 101–116 (1979).

    Article  Google Scholar 

  46. Clutton-Brock, T. H. & Harvey, P. H. J. Zool. Lond. 190, 309–323 (1980).

    Article  Google Scholar 

  47. Bakker, R. T. Evolution 27, 636–658 (1971); Nature 238, 81–85 (1972).

    Article  Google Scholar 

  48. Hopson, J. A. A. Rev. Ecol. Syst. 8, 429–448 (1977); in Biology of the Reptilia Vol. 9 (ed. Gans, C.) 39–146 (Academic, London, 1979).

    Google Scholar 

  49. Bennett, A. F. & Dalzell, B. Evolution 27, 170–174 (1973).

    Article  Google Scholar 

  50. Colbert, E. H. Am. Mus. Novit. 2076, 1–16 (1962).

    Google Scholar 

  51. Hopson, J. A. in A Cold Look at the Warm-blooded Dinosaurs (eds Thomas, R. D. K. & Olson, E. C.) 287–310 (AAAS, Washington, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, R. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293, 57–60 (1981). https://doi.org/10.1038/293057a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293057a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing