Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical composition of the atmosphere of Venus

Abstract

Measurements onboard the Venera 11, 12 (refs 1–4) and Pioneer Venus5,6 spacecrafts stimulated us to study the chemical composition of the subcloud atmosphere of Venus in terms of the thermochemical equilibrium calculations, comparison of typical mixing and chemical times and a rule of height-independent element mixing ratio in the absence of condensation7. The photochemistry of the atmosphere down to 50 km was calculated using transport effects and number densities of CO2, H2O, HCl, SO2 and CO at the lower boundary and rate coefficients of 102 reactions. These reactions include catalytical cycles of COCl and COCl2 which accelerate O2 destruction and CO2 formation. Altitude profiles of 27 components agree well with those measured in the upper and middle atmosphere. H2O and SO2 mixing ratios are very similar and sharply decrease at 60 km due to SO2 photolysis and sulphuric acid formation. Calculations show that sulphuric acid and sulphates are the main components of the second and third modes of particle size distribution in the upper and middle cloud layers. The lower cloud layer may consist of AlCl3 and FeCl3.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Istomin, V. G., Grechnev, K. V. & Kochnev, V. A. Pisma AZh 5, 211–216 (1979).

    CAS  Google Scholar 

  2. 2

    Istomin, V. G., Kochnev, K. V. & Ozeroy, L. N. Cosmic Res. 17, 703–707 (1979).

    CAS  Google Scholar 

  3. 3

    Gelman, B. G. et al. Pisma v AZh 5, 217–221 (1979); Cosmic Res. 17, 708–713 (1979); Space Res. (in the press).

    CAS  Google Scholar 

  4. 4

    Moroz, V. I. et al. Pisma AZh 5, 222–228 (1979); Cosmic Res. 17, 727–742 (1979).

    CAS  Google Scholar 

  5. 5

    Oyama, V. I., Carle, G. C., Woeller, F. & Pollack, J. B. Science 203, 802–805 (1979); J. geophys. Res. 85, 7891–7902 (1980).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Hoffman, J. H., Hodges, R. R., McElroy, M. B., Donahue, T. M. & Kolpin, M. Science 205, 49–52 (1979); J. geophys. Res. 85, 7882–7890 (1980).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Krasnopolsky, V. A. & Parshev, V. A. Cosmic Res. 17, 763–771 (1979); 19, 87–103, 261–278 (1981); Preprints No. 590 and 591 (Space Research Institute, Moscow, 1980).

    Google Scholar 

  8. 8

    Connes, P., Connes, J., Kaplan, L. D. & Benedict, W. S. Astrophys. J. 147, 1230–1237 (1967); 152, 731–743 (1968).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Sze, N. D. & McElroy, M. B. Planet. Space Sci. 23, 3763–786 (1975).

  10. 10

    Prinn, R. G. J. atmos. Sci. 32, 1237–1247 (1975).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Winick, J. R. & Stewart, A. I. J. geophys. Res. 85, 7849–7860 (1980).

    ADS  Article  Google Scholar 

  12. 12

    Kondratiev, V. N. Rate Constants of Gas Reactions (Nauka, Moscow, 1971).

    Google Scholar 

  13. 13

    Niemann, H. B. et al. Science 203, 770–772 (1979); 205, 54–56 (1979).

    ADS  CAS  Article  Google Scholar 

  14. 14

    von Zahn, U., Krankowsky, D., Manersberger, K., Nier, A. O. & Hunten, D. M. Science 203, 768–770 (1979); J. geophys. Res. 85, 7829–7840 (1980).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Stewart, A. I., Anderson, D. E., Esposito, L. W. & Barth, C. A. Science 203, 777–778 (1979).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Fink, U., Larson, H. P., Kuiper, G. P. & Poppen, R. F. Icarus 17, 617–631 (1972).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Esposito, L. W., Winick, J. R. & Stewart, A. I. Geophys. Res. Lett. 6, 601–604 (1979).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Krasnopolsky, V. A., Moroz, V. I. & Zasova, L. V. Space Res. (in the press).

  19. 19

    Knollenberg, R. G. & Hunten, D. M. Science 205, 70–74 (1979).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Blamont, J. & Ragent, B. Science 205, 67–70 (1979).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Traub, W. A. & Carleton, N. P. in Exploration of Planetary Atmospheres (eds Woszyck, A. & Iwaniszewska, C.) 223–225 (Reidel, Dordrecht, 1974).

    Book  Google Scholar 

  22. 22

    Owen, T. & Sagan, C. Icarus 16, 557–568 (1972).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Krasnopolsky, V. A. Planet. Space Sci. 27, 1403–1408 (1979).

    ADS  Article  Google Scholar 

  24. 24

    Surkov, Yu. A. et al. Pisma AZh. 5, 7 (1979).

    Google Scholar 

  25. 25

    Watson, A. J. et al. Geophys. Res. Lett. 6, 743–746 (1979).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Krasnopolsky, V. A. Cosmic Res. 18, 429–434 (1980).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krasnopolsky, V., Parshev, V. Chemical composition of the atmosphere of Venus. Nature 292, 610–613 (1981). https://doi.org/10.1038/292610a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing