Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relationship of aardvark to elephants, hyraxes and sea cows from α-crystallin sequences

Abstract

One of the great enigmas of mammalian phylogeny is the genealogical relationship of the aardvark (Orycteropus afer), the only living representative of the order Tubulidentata. Although now generally grouped close to the ungulates and paenungulates1–4, and thought to be derived from a common condylarthran stock5–7, it still holds an isolated position among eutherian mammals. The evidence of the evolutionary relationships of the aardvark may be obscured at the morphological and anatomical level by the pronounced adaptations to its ant-eating and burrowing habits, and may be better preserved in its protein molecules, as direct copies of the genetic material. We have therefore now studied the amino acid sequence of the eye lens protein α-crystallin A of the aardvark, and compared it with the corresponding sequences from species representing 15 mammalian orders. Unique similarities were observed among the α-crystallin A sequences of aardvark and the paenungulates manatee, hyrax and elephant, suggesting that the closest relatives of the Tubulidentata are found in the paenungulate orders Sirenia (sea cows), Hydracoidea (hydraxes) and Proboscidea (elephants). Moreover, these orders do not seem to be derived from a common stem group with the ungulates, but might well be one of the first offshoots of the placental mammalian line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Simpson, G. G. Bull. Am. Mus. nat. Hist. 85, 1–350 (1945).

    Google Scholar 

  2. Van Valen, L. Evolution 25, 420–428 (1971).

    Article  Google Scholar 

  3. McKenna, M. C. in Phytogeny of the Primates (eds Luckett, W. P. & Szalay, F. S.) 21–46 (Plenum, New York, 1975).

    Book  Google Scholar 

  4. Szalay, F. S. in Major Patterns in Vertebrate Evolution (eds Hecht, M. K., Goody, P. C. & Hecht, B. M.) 315–374 (NATO Advanced Study Institute, Plenum, New York, 1977).

    Book  Google Scholar 

  5. Romer, A. S. Vertebrate Paleontology 3rd edn (University of Chicago Press, 1966).

    Google Scholar 

  6. Thenius, E. Phylogenie der Mammalia (de Gruyter, Berlin, 1969).

    Google Scholar 

  7. Patterson, B. in Evolution of African Mammals (eds Maglio, V. J. & Cooke, H. B. S.) 268–278 (Harvard University Press, 1978).

    Google Scholar 

  8. Bloemendal, H. (ed.) Molecular and Cellular Biology of the Eye Lens (Wiley-Interscience, New York, 1981).

  9. Clayton, R. M. in The Eye Vol. 5 (ed. Davson, H.) 399–494 (Academic, New York, 1974).

    Google Scholar 

  10. De Jong, W. W., Gleaves, J. T. & Boulter, D. J. molec. Evol. 10, 123–135 (1977).

    Article  ADS  CAS  Google Scholar 

  11. De Jong, W. W., Zweers, A., Joysey, K. A., Gleaves, J. T. & Boulter, D. in The Evolution and Ecology of Sloths, Anteaters and Armadillos (ed. Montgomery, G. G.) (Smithsonian Institution Press, Washington DC, in the press).

  12. Moore, G. W., Barnabas, J. & Goodman, M. J. theor. Biol. 38, 459–485 (1973).

    Article  CAS  Google Scholar 

  13. Moore, G. W. in Molecular Anthropology (eds Goodman, M. & Tashian, R. E.) 117–137 (Plenum, New York, 1976).

    Book  Google Scholar 

  14. Shoshani, J., Goodman, M. & Prychodko, W. Am. Zool. 18, 601 (1978).

    Google Scholar 

  15. Le Gros Clark, W. E. & Sonntag, D. F. Proc. zool. Soc. Lond. 30, 445–485 (1926).

    Google Scholar 

  16. Engelmann, G. F. in The Evolution and Ecology of Sloths, Anteaters and Armadillos (ed. Montgomery, G. G.) (Smithsonian Institution Press, Washington DC, in the press).

  17. Dene, H., Goodman, M. & Romero-Herrera, A. E. Proc. R. Soc. B207, 111–127 (1980).

    ADS  CAS  Google Scholar 

  18. Van der Ouderaa, F. J., De Jong, W. W. & Bloemendal, H. Eur. J. Biochem. 39, 207–222 (1973).

    Article  CAS  Google Scholar 

  19. De Jong, W. W. & Terwindt, E. C. Eur. J. Biochem. 67, 503–510 (1976).

    Article  CAS  Google Scholar 

  20. Van Druten, J. A. M., Peer, P. G. M., Bos, A. B. H. & De Jong, W. W. J. theor. Biol. 73, 549–561 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, W., Zweers, A. & Goodman, M. Relationship of aardvark to elephants, hyraxes and sea cows from α-crystallin sequences. Nature 292, 538–540 (1981). https://doi.org/10.1038/292538a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292538a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing