Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical flux in an acid-stressed stream

Abstract

The acidity of rain and snow falling on widely separated areas of the world has been increasing during the past 30 yr (refs 1–3). Acid rainfall consists of a dilute solution of sulphuric and nitric acids due to the oxidation and hydrolysis of airborne sulphur and nitrogen4 and frequently has a pH of <4.0. Recent studies have shown that acid rain alters the chemistry and biology of streams and lakes in large regions of the world1,3. Results from reconnaissance studies in the field5–9 and physiological studies in the laboratory9 show that diversity and numbers of aquatic organisms of all major trophic levels are affected by low pH (high acidity). The quantitative effects of such acidification on biogeochemistry and biological function in natural streams have received little attention. In contrast, much is known about aquatic ecosystems affected by acid mine drainage10–13. However, waters receiving acid mine drainage show effects caused by metal contamination and deposition of iron oxide particulates, as well as acidification. In our study, we experimentally acidified a third-order section of a small mountain stream in the Hubbard Brook Experimental Forest, West Thornton, New Hampshire, USA. Our aim was to measure the effects of increased acidity on chemical and biological export in the stream. It was found that experimental stream acidification to pH 4 did alter the chemical and biological flux. The most significant inorganic component affected by the experiment was aluminium. A significant net flux of carbon and nitrogen occurred in the biologically bound forms but not in dissolved substances. Net flux of phosphorus was significant in biologically bound forms. The increased loss of nutrients in the particulate organic fraction was also important, particularly if scaled tb the total stream ecosystem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Braekke, F. W. Res. Rep. 6/76 (SNSF Project, Oslo, 1976).

  2. Likens, G. E., Wright, R. F., Galloway, J. & Butler, T. Scient. Am. 241, 3–11 (1979).

    Article  Google Scholar 

  3. Drabløs, D. & Tollan, A. Proc. int. Conf. on Ecological Impact of Acid Precipitation (SNSF Project, Oslo, 1980).

    Google Scholar 

  4. Galloway, J. N., Likens, G. E. & Edgerton, E. S. in Proc. 1st int. Symp. on Acid Precipitation and the Forest Ecosystem USDA, Northeastern Forest Experiment Station, Broomall, 1976).

    Google Scholar 

  5. Sutcliffe, D. W. & Carrick, T. F. Freshwat. Biol. 3, 437–462 (1973).

    Article  Google Scholar 

  6. Almer, B., Dickson, W., Ekstrom, C., Hornstrom, E. & Miller, U. Ambio 3, 30–36 (1974).

    Google Scholar 

  7. Grahn, O., Hultberg, H. & Lander, L. Ambio 3, 93–94 (1974).

    Google Scholar 

  8. Hendrey, G. R. & Wright, R. F. in J. Great Lakes Res. 2, suppl. 1, 192–207 (1976).

    Article  Google Scholar 

  9. Muniz, I. P. & Leivestad, H. in Proc. int. Conf. on Ecological Impact of Acid Precipitation (eds Drabløs, D. & Tollan, A.) 84–92 (SNSF Project, Oslo, 1980).

    Google Scholar 

  10. Parsons, J. D. Arch. Hydrobiol. 25, 25–50 (1968).

    Google Scholar 

  11. Herricks, E. E. in Recovery and Restoration of Damaged Ecosystems (eds Cairns, J. Jr, Dickson, K. L. & Herricks, E. E.) 43–71 (University Press of Virginia, Charlottesville, 1975).

    Google Scholar 

  12. Whitton, B. A. & Say, P. J. in River Ecology Vol. 2 (ed. Whitton, B. A.) 286–311 (University of California Press, Berkeley, 1975).

    Google Scholar 

  13. Tomkiewicz, S. M. Jr & Dunson, W. A. Wat. Res. 11, 397–402 (1977).

    Article  Google Scholar 

  14. Schofield, C. L. in Proc. Conf. on Emerging Environmental Problems: Acid Rain 76–86 (Publ. EPA-902/9-76-00, Environmental Protection Agency, Washington DC, 1975).

    Google Scholar 

  15. Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S. & Johnson, N. M. Biogeochemistry of a Forested Ecosystem (Springer, New York, 1977).

    Book  Google Scholar 

  16. Johannessen, M., Dale, T., Gjessing, E. T., Henriksen, A. & Wright, R. F. in Proc. Grenoble Symp. on Isotopes and Impurities in Snow and Ice 116–120 (IAHS Publ. No. 118, 1977).

    Google Scholar 

  17. Leivestad, H. & Muniz, I. P. Nature 259, 391–392 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Schofield, C. L. Research Program Technical Comprehensive Report No. A-072-NY, 1–26 (Office of Water Research Technology, US Department of Interior, Washington DC, 1977).

  19. Hall, R. J. & Likens, G. E. in Atmospheric Sulfur Deposition: Environmental Impact and Health Effects (eds Shriner, D. S., Richmond, C. R. & Lindberg, S. E.) 443–462 (Ann Arbor Science, Michigan, 1979).

    Google Scholar 

  20. Hall, R. J., Likens, G. E., Fiance, S. B. & Hendrey, G. R. Ecology 61, 976–989 (1980).

    Article  CAS  Google Scholar 

  21. Hall, R. J. & Likens, G. E. in Proc. int. Conf. on Ecological Impact of Acid Precipitation (eds Drabløs, D. & Tollan, A.) 375–376 (SNSF Project, Oslo, 1980).

  22. Likens, G. E., Bormann, F. H. & Eaton, J. S. in Proc. NATO Advanced Research Institute on Effects of Acid Precipitation on Terrestrial Ecosystems (eds Hutchinson, T. S. & Havas, M.) 443–464 (Plenum, New York, 1980).

    Book  Google Scholar 

  23. Menzel, D. W. & Vaccaro, R. F. Limnol. Oceanogr. 9, 138–142 (1964).

    Article  ADS  Google Scholar 

  24. Likens, G. E. in Primary Production of Inland Aquatic Ecosystems (eds Lieth, H. & Whittaker, R. H.) 185–215 (Springer, New York, 1975).

    Google Scholar 

  25. Wallace, J. B., Webster, J. R. & Woodhall, W. R. Arch. Hydrobiol. 79, 506–532 (1977).

    Google Scholar 

  26. Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America (Kendall/Hunt, Dubuque, 1978).

    Google Scholar 

  27. Cummins, K. W. Bioscience 24, 631–641 (1974).

    Article  Google Scholar 

  28. Hagen, A. & Langeland, A. Envir. Pollut. 5, 45–57 (1973).

    Article  CAS  Google Scholar 

  29. Johannessen, M. & Henriksen, A. Wat. Resour. Res. 14, 615–619 (1978).

    Article  ADS  CAS  Google Scholar 

  30. Schofield, C. L. & Trojnar, J. R. in Proc. Conf. on Polluted Rain (Plenum, New York, 1980).

    Google Scholar 

  31. Mulder, J. thesis, The Agricultural Univ. Wageningen (1980).

  32. Johnson, N. M., Driscoll, C. T., Eaton, J. S., Likens, G. E. & McDowell, W. H. Geochim. cosmochim. Acta (in the press).

  33. Johnson, N. M. Science 204, 497–499 (1979).

    Article  ADS  CAS  Google Scholar 

  34. Cronan, C. S. & Schofield, C. R. Science 204, 304–306 (1979).

    Article  ADS  CAS  Google Scholar 

  35. Driscoll, C. T. thesis, Cornell Univ. (1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, R., Likens, G. Chemical flux in an acid-stressed stream. Nature 292, 329–331 (1981). https://doi.org/10.1038/292329a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292329a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing