Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH

Abstract

Neutrophil leukocytes are the body's major defence against bacteria, which they phagocytose and kill. It has been found that phagocytosis and killing are accompanied by a dramatic rise in non-mitochondrial respiration1,2; and that the efficiency of killing is impaired in the absence of oxygen3,4. It is also impaired in neutrophils from patients with chronic granulomatous disease (CGD), where the respiratory burst is absent5. This has been difficult to reconcile with their normal content of granule proteins that kill bacteria in vitro6. Indeed, CGD cells are essentially normal both morphologically and constitutionally7,8 except that they lack a functional very low potential cytochrome b (b−245)9 which is a component of the oxidase system responsible for the respiratory burst of normal cells10,11. Activation of the oxidase is associated with the generation of various reduced oxygen species12–16 which have been widely thought to be responsible for the killing of phagocytosed microorganisms either directly17, or by acting as substrates for myeloperoxidase-mediated halogenation18. We report here, however, that a major consequence of the defective function of this oxidase in neutrophils and monocytes from CGD patients is an absence of the normal initial rise, and an unusually rapid and extensive fall in pH which is itself associated with the impairment of the killing and digestion of intracellular staphylococci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baldridge, C. W. & Gerard, R. W. Am. J. Physiol. 103, 235–236 (1933).

    CAS  Google Scholar 

  2. Sbarra, A. J. & Karnovsky, M. L. J. biol. Chem. 234, 1355–1362 (1959).

    CAS  PubMed  Google Scholar 

  3. Selvaraj, R. J. & Sbarra, A. J. Nature 211, 1272–1276 (1966).

    Article  ADS  CAS  Google Scholar 

  4. Mandell, G. L. Infect. Immun. 9, 337–341 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Holmes, B., Page, A. R. & Good, R. A. J. clin. Invest. 46, 1422–1432 (1967).

    Article  CAS  Google Scholar 

  6. Quie, P. G., White, J. G., Holmes, B. & Good, R. A. J. clin. Invest. 46, 668–679 (1967).

    Article  CAS  Google Scholar 

  7. Segal, A. W. & Peters, T. J. Q. J. Med. 47, 213–220 (1978).

    CAS  PubMed  Google Scholar 

  8. Klebanoff, S. J. & Clark, R. A. in The Neutrophil, 641–709 (North-Holland, Amsterdam, 1978).

    Google Scholar 

  9. Segal, A. W. & Jones, O. T. G. FEBS Lett. 110, 111–114 (1980).

    Article  CAS  Google Scholar 

  10. Segal, A. W. & Jones, O. T. G. Nature 276, 515–517 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Segal, A. W. & Jones, O. T. G. Biochem. J. 180, 33–44 (1979).

    Google Scholar 

  12. Babior, B. M., Kipnes, R. S. & Curnutte, J. T. J. clin. Invest. 52, 741–744 (1973).

    Article  CAS  Google Scholar 

  13. Iyer, G. Y. N., Islam, M. F. & Quastel, J. H. Nature 192, 535–541 (1961).

    Article  ADS  CAS  Google Scholar 

  14. Root, R. K., Metcalf, J., Oshino, N. & Chance, B. J. clin. Invest. 55, 945–955 (1975).

    Article  CAS  Google Scholar 

  15. Tauber, A. I. & Babior, B. M. J. clin. Invest. 60, 374–379 (1977).

    Article  CAS  Google Scholar 

  16. Green, M. R., Hill, H. A. O., Okolow-Zubrowska, M. J. & Segal, A. W. FEBS Lett. 100, 23–26 (1979).

    Article  CAS  Google Scholar 

  17. Babior, B.M., Curnutte, J. T. & Kipnes, R. S. J. Lab. clin. Med. 85, 235–244 (1975).

    CAS  PubMed  Google Scholar 

  18. Klebanoff, S. J. Semin. Hemat. 12, 117–142 (1975).

    CAS  PubMed  Google Scholar 

  19. Tan, J. S., Watanakunakorn, C. & Phair, J. P. J. Lab. clin. Med. 78, 316–322 (1971).

    CAS  PubMed  Google Scholar 

  20. Berlin, R. D., Fera, J. P. & Pfeiffer, J. R. J. clin. Invest. 63, 1137–1144 (1979).

    Article  CAS  Google Scholar 

  21. Segal, A. W. & Allison, A. C. Ciba Fdn Symp. 65, 205–223 (1979).

    CAS  Google Scholar 

  22. Jacques, Y. V. & Bainton, D. F. Lab. Invest. 39, 179–185 (1978).

    CAS  PubMed  Google Scholar 

  23. Ohkuma, S. & Poole, B. Proc. natn. Acad. Sci. U.S.A. 75, 3327–3331 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Mandell, G. L. Proc. Soc. exp. Biol. Med. 134, 447–449 (1970).

    Article  CAS  Google Scholar 

  25. Armitage, P. in Statistical Methods in Medical Research, 281–282, 289–291 (Blackwell, Oxford, 1971).

    Google Scholar 

  26. Segal, A. W., Dorling, J. & Coade, S. J. Cell Biol. 85, 42–59 (1980).

    Article  CAS  Google Scholar 

  27. Barrett, A. J. & Heath, M. F. in The Lysosomes. A Laboratory Handbook (ed. Dingle, T. T.) 19–145 (North-Holland, Amsterdam, 1977).

    Google Scholar 

  28. Gorin, G., Wang, S. F. & Papapavlou, L. Ann. Biochem. 99, 113–127 (1971).

    Article  Google Scholar 

  29. Bretz, U. & Baggiolini, J. Cell Biol. 63, 251–269 (1974).

    Article  CAS  Google Scholar 

  30. Davies, P., Page, R. C. & Allison, A. C. J. exp. Med. 139, 1262–1282 (1974).

    Article  CAS  Google Scholar 

  31. Holmes, B., Quie, P. G., Windhorst, D. B. & Good, R. A. Lancet i, 1225–1228 (1966).

    Article  Google Scholar 

  32. Stossel, T. P., Root, R. K. & Vaughan, M. New Engl. J. Med. 286, 120–123 (1972).

    Article  CAS  Google Scholar 

  33. Skarnes, R. C. & Watson, D. W. J. exp. Med. 104, 829–845 (1956).

    Article  CAS  Google Scholar 

  34. Skarnes, R. C. & Watson, D. W. Bact. Rev. 21, 273–294 (1957).

    CAS  PubMed  Google Scholar 

  35. Skarnes, R. C. Nature 216, 806–808 (1967).

    Article  ADS  CAS  Google Scholar 

  36. Odeberg, H. & Olsson, I. J. clin. Invest. 56, 1118–1124 (1975).

    Article  CAS  Google Scholar 

  37. Hirsch, J. G. J. exp. Med. 103, 613–621 (1956).

    Article  CAS  Google Scholar 

  38. Landing, B. H. & Shirkey, H. S. Paediatrics 20, 431–438 (1957).

    CAS  Google Scholar 

  39. Clawson, C. C., Rodey, G. E. & Good, R. A. Lab. Invest. 22, 294–300 (1970).

    CAS  PubMed  Google Scholar 

  40. de Duve, C. et al. Biochem. Pharmac. 23, 2495–2531 (1974).

    Article  CAS  Google Scholar 

  41. Segal, A. W. & Coade, S. B. Biochem. biophys. Res. Commun. 84, 611–617 (1978).

    Article  CAS  Google Scholar 

  42. Boyum, A. Scand. J. clin. Lab. Invest. 21, Suppl. 97, 31–50 (1968).

    Article  CAS  Google Scholar 

  43. Luria, S. E. in The Bacteria (eds Gunsalus, I. C. & Stamer, R. Y.) 1, 8 (Academic, New York, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, A., Geisow, M., Garcia, R. et al. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature 290, 406–409 (1981). https://doi.org/10.1038/290406a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/290406a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing