Article | Published:

Design and self-assembly of two-dimensional DNA crystals

Naturevolume 394pages539544 (1998) | Download Citation



Molecular self-assembly presents a ‘bottom-up’ approach to the fabrication of objects specified with nanometre precision. DNA molecular structures and intermolecular interactions are particularly amenable to the design and synthesis of complex molecular objects. We report the design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules. Intermolecular interactions between the structural units are programmed by the design of ‘sticky ends’ that associate according to Watson–Crick complementarity, enabling us to create specific periodic patterns on the nanometre scale. The patterned crystals have been visualized by atomic force microscopy.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Liu, B., Leontis, N. B. & Seeman, N. C. Bulged 3-arm DNA branched junctions as components for nanoconstruction. Nanobiology 3, 177–188 (1994).

  2. 2

    Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

  3. 3

    Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).

  4. 4

    Qiu, H., Dewan, J. & Seeman, N. C. ADNA decamer with a sticky end: The crystal structure of d-CGACGATCGT. J. Mol. Biol. 267, 881–898 (1997).

  5. 5

    Ma, R.-I., Kallenbach, N. R., Sheardy, R. D., Petrillo, M. L. & Seeman, N. C. Three-arm nucleic acid junctions are flexible. Nucleic Acids Res. 14, 9745–9753 (1986).

  6. 6

    Petrillo, M. L. et al. The ligation and flexibility of four-arm DNA junctions. Biopolymers 27, 1337–1352 (1988).

  7. 7

    Fu, T.-J. & Seeman, N. C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).

  8. 8

    Schwacha, A. & Kleckner, N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791 (1995).

  9. 9

    Li, X., Yang, X., Qi, J. & Seeman, N. C. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140 (1996).

  10. 10

    Winfree, E. in DNA Based Computers: Proceedings of a DIMACS Workshop, April 4, 1995, Princeton University (eds Lipton, R. J. & Baum, E. B.) 199–221 (American Mathematical Society, Providence, RI, (1996)).

  11. 11

    Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

  12. 12

    Grünbaum, B. & Shephard, G. C. Tilings and Patterns (Freeman, New York, (1986)).

  13. 13

    Wang, H. in Proc. Symp. Math. Theory of Automata 23–56 (Polytechnic, New York, (1963)).

  14. 14

    Winfree, E., Yang, X. & Seeman, N. C. in Proceedings of the 2nd DIMACS Meeting on DNA Based Computers, Princeton University, June 20–12, 1996 (American Mathematical Society, Providence, RI, in the press).

  15. 15

    Reif, J. in Proceedings of the 3rd DIMACS Meeting on DNA Based Computers, University of Pennsylvania, June 23–25, 1997 (American Mathematical Society, Providence, RI, in the press).

  16. 16

    Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

  17. 17

    Wang, J. C. Helical repeat of DNA in solution. Proc. Natl Acad. Sci. USA 76, 200–203 (1979).

  18. 18

    Rhodes, D. & Klug, A. Helical periodicity of DNA determined by enzyme digestion. Nature 286, 573–578 (1980).

  19. 19

    Seeman, N. C. De novo design of sequences for nucleic acid structural engineering. J. Biomol. Struct. Dyns 8, 573–581 (1990).

  20. 20

    Yue, K. & Dill, K. A. Inverse protein folding problem—designing polymer sequences. Proc. Natl Acad. Sci. USA 89, 4163–4167 (1992).

  21. 21

    Sun, S., Brem, R., Chan, H. S. & Dill, K. A. Designing amino acid sequences to fold with good hydrophobic cores. Prot. Engng 9, 1205–1213 (1996).

  22. 22

    SantaLucia, J., Allawi, H. T. & Seneviratne, A. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996).

  23. 23

    Ouporov, I. V. & Leontis, N. B. Refinement of the solution structure of a branched DNA three-way junction. Biophys. J. 68, 266–274 (1995).

  24. 24

    Hansma, H. G. et al. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256, 1180–1184 (1992).

  25. 25

    Shaiu, W.-L., Larson, D. D., Vesenka, J. & Henderson, E. Atomic force microscopy of oriented linear DNA molecules labelled with 5 nm gold spheres. Nucleic Acids Res. 21, 99–103 (1993).

  26. 26

    Shaiu, W.-L., Vesenka, J., Jondle, D., Henderson, E. & Larson, D. D. Visualization of circular DNA molecules labelled with colloidal gold spheres using atomic force microscopy. J. Vac. Sci. Tech. A 11, 820–823 (1993).

  27. 27

    Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

  28. 28

    Niemeyer, C. M., Sano, T., Smith, C. L. & Cantor, C. R. Oligonucleotide-directed self-assembly of proteins. Nucleic Acids Res. 22, 5530–5539 (1994).

  29. 29

    Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

  30. 30

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. ADNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

  31. 31

    Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

  32. 32

    Breaker, R. R. & Joyce, G. F. ADNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).

  33. 33

    Chen, J. & Seeman, N. C. The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

  34. 34

    Zhang, Y. & Seeman, N. C. The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

  35. 35

    Joannopolous, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Moulding the Flow of Light (Princeton University Press, Princeton, (1995)).

  36. 36

    Ribeiro, F. R. et al. Structure–activity relationships in zeolites. J. Mol. Cat. A: Chem. 96, 245–270 (1996).

  37. 37

    Robinson, B. H. & Seeman, N. C. The design of a biochip: A self-assembling molecular-scale memory device. Prot. Engng 1, 295–300 (1987).

  38. 38

    Haddon, R. C. & Lamola, A. A. The molecular electronic defice and the biochip computer: present status. Proc. Natl Acad. Sci. USA 82, 1874–1878 (1985).

  39. 39

    Carter, E. S. & Tung, C.-S. NAMOT2—a redesigned nucleic acid modelling tool: construction of non-canonical DNA structures. CABIOS 12, 25–30 (1996).

  40. 40

    Vainshtein, B. K. Modern Crystallography, 1: Fundamentals of Crystals (Springer, New York, (1994)).

Download references


We thank J. Hopfield, S. Roweis, S. Mahajan, C. Brody, L. Adleman and P. Rothemund for discussion; J. Abelson and his group for use of his laboratory and for technical advice; A. Segal, E. Rabani and R. Moision for instruction and advice on AFM imaging; the Beckman Institute Molecular Materials Resource Center for assistance and use of their AFM facilities; F. Furuya for help with labelling; and M. Yoder, V. Morozov, D. Stokes, M. Simon and J. Wall for assistance in early attempts to visualize DNA lattices. The research at Caltech has been supported by the National Institute for Mental Health, General Motors' Technology Research Partnerships program, and by the Center for Neuromorphic Systems Engineering as a part of the NSF Engineering Research Center Program. The research at NYU has been supported by the Office of Naval Research, the National Institute of General Medical Sciences, and the NSF.

Author information


  1. Computation and Neural Systems, California Institute of Technology, Pasadena, 91125, California, USA

    • Erik Winfree
  2. Department of Chemistry, New York University, New York, New York, 10003, USA

    • Furong Liu
    • , Lisa A. Wenzler
    •  & Nadrian C. Seeman


  1. Search for Erik Winfree in:

  2. Search for Furong Liu in:

  3. Search for Lisa A. Wenzler in:

  4. Search for Nadrian C. Seeman in:

Corresponding author

Correspondence to Erik Winfree.

Supplementary Information

About this article

Publication history



Issue Date


Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.